ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0add4d GIF version

Theorem xnn0add4d 9768
Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 9767. (Contributed by AV, 12-Dec-2020.)
Hypotheses
Ref Expression
xnn0add4d.1 (𝜑𝐴 ∈ ℕ0*)
xnn0add4d.2 (𝜑𝐵 ∈ ℕ0*)
xnn0add4d.3 (𝜑𝐶 ∈ ℕ0*)
xnn0add4d.4 (𝜑𝐷 ∈ ℕ0*)
Assertion
Ref Expression
xnn0add4d (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))

Proof of Theorem xnn0add4d
StepHypRef Expression
1 xnn0add4d.1 . . 3 (𝜑𝐴 ∈ ℕ0*)
2 xnn0xrnemnf 9144 . . 3 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
31, 2syl 14 . 2 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xnn0add4d.2 . . 3 (𝜑𝐵 ∈ ℕ0*)
5 xnn0xrnemnf 9144 . . 3 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
64, 5syl 14 . 2 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
7 xnn0add4d.3 . . 3 (𝜑𝐶 ∈ ℕ0*)
8 xnn0xrnemnf 9144 . . 3 (𝐶 ∈ ℕ0* → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
97, 8syl 14 . 2 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
10 xnn0add4d.4 . . 3 (𝜑𝐷 ∈ ℕ0*)
11 xnn0xrnemnf 9144 . . 3 (𝐷 ∈ ℕ0* → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
1210, 11syl 14 . 2 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
133, 6, 9, 12xadd4d 9767 1 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 2125  wne 2324  (class class class)co 5814  -∞cmnf 7889  *cxr 7890  0*cxnn0 9132   +𝑒 cxad 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1re 7805  ax-addrcl 7808  ax-addcom 7811  ax-addass 7813  ax-rnegex 7820
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-pnf 7893  df-mnf 7894  df-xr 7895  df-inn 8813  df-n0 9070  df-xnn0 9133  df-xadd 9658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator