ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0add4d GIF version

Theorem xnn0add4d 10078
Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 10077. (Contributed by AV, 12-Dec-2020.)
Hypotheses
Ref Expression
xnn0add4d.1 (𝜑𝐴 ∈ ℕ0*)
xnn0add4d.2 (𝜑𝐵 ∈ ℕ0*)
xnn0add4d.3 (𝜑𝐶 ∈ ℕ0*)
xnn0add4d.4 (𝜑𝐷 ∈ ℕ0*)
Assertion
Ref Expression
xnn0add4d (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))

Proof of Theorem xnn0add4d
StepHypRef Expression
1 xnn0add4d.1 . . 3 (𝜑𝐴 ∈ ℕ0*)
2 xnn0xrnemnf 9440 . . 3 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
31, 2syl 14 . 2 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xnn0add4d.2 . . 3 (𝜑𝐵 ∈ ℕ0*)
5 xnn0xrnemnf 9440 . . 3 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
64, 5syl 14 . 2 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
7 xnn0add4d.3 . . 3 (𝜑𝐶 ∈ ℕ0*)
8 xnn0xrnemnf 9440 . . 3 (𝐶 ∈ ℕ0* → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
97, 8syl 14 . 2 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
10 xnn0add4d.4 . . 3 (𝜑𝐷 ∈ ℕ0*)
11 xnn0xrnemnf 9440 . . 3 (𝐷 ∈ ℕ0* → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
1210, 11syl 14 . 2 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
133, 6, 9, 12xadd4d 10077 1 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  (class class class)co 6000  -∞cmnf 8175  *cxr 8176  0*cxnn0 9428   +𝑒 cxad 9962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-addcom 8095  ax-addass 8097  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-inn 9107  df-n0 9366  df-xnn0 9429  df-xadd 9965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator