ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0add4d GIF version

Theorem xnn0add4d 9888
Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 9887. (Contributed by AV, 12-Dec-2020.)
Hypotheses
Ref Expression
xnn0add4d.1 (𝜑𝐴 ∈ ℕ0*)
xnn0add4d.2 (𝜑𝐵 ∈ ℕ0*)
xnn0add4d.3 (𝜑𝐶 ∈ ℕ0*)
xnn0add4d.4 (𝜑𝐷 ∈ ℕ0*)
Assertion
Ref Expression
xnn0add4d (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))

Proof of Theorem xnn0add4d
StepHypRef Expression
1 xnn0add4d.1 . . 3 (𝜑𝐴 ∈ ℕ0*)
2 xnn0xrnemnf 9253 . . 3 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
31, 2syl 14 . 2 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xnn0add4d.2 . . 3 (𝜑𝐵 ∈ ℕ0*)
5 xnn0xrnemnf 9253 . . 3 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
64, 5syl 14 . 2 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
7 xnn0add4d.3 . . 3 (𝜑𝐶 ∈ ℕ0*)
8 xnn0xrnemnf 9253 . . 3 (𝐶 ∈ ℕ0* → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
97, 8syl 14 . 2 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
10 xnn0add4d.4 . . 3 (𝜑𝐷 ∈ ℕ0*)
11 xnn0xrnemnf 9253 . . 3 (𝐷 ∈ ℕ0* → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
1210, 11syl 14 . 2 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
133, 6, 9, 12xadd4d 9887 1 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wne 2347  (class class class)co 5877  -∞cmnf 7992  *cxr 7993  0*cxnn0 9241   +𝑒 cxad 9772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-addcom 7913  ax-addass 7915  ax-rnegex 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-inn 8922  df-n0 9179  df-xnn0 9242  df-xadd 9775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator