ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmapen Unicode version

Theorem xpmapen 6816
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1  |-  A  e. 
_V
xpmapen.2  |-  B  e. 
_V
xpmapen.3  |-  C  e. 
_V
Assertion
Ref Expression
xpmapen  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )

Proof of Theorem xpmapen
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmapen.1 . 2  |-  A  e. 
_V
2 xpmapen.2 . 2  |-  B  e. 
_V
3 xpmapen.3 . 2  |-  C  e. 
_V
4 fveq2 5486 . . . 4  |-  ( w  =  z  ->  (
x `  w )  =  ( x `  z ) )
54fveq2d 5490 . . 3  |-  ( w  =  z  ->  ( 1st `  ( x `  w ) )  =  ( 1st `  (
x `  z )
) )
65cbvmptv 4078 . 2  |-  ( w  e.  C  |->  ( 1st `  ( x `  w
) ) )  =  ( z  e.  C  |->  ( 1st `  (
x `  z )
) )
74fveq2d 5490 . . 3  |-  ( w  =  z  ->  ( 2nd `  ( x `  w ) )  =  ( 2nd `  (
x `  z )
) )
87cbvmptv 4078 . 2  |-  ( w  e.  C  |->  ( 2nd `  ( x `  w
) ) )  =  ( z  e.  C  |->  ( 2nd `  (
x `  z )
) )
9 fveq2 5486 . . . 4  |-  ( w  =  z  ->  (
( 1st `  y
) `  w )  =  ( ( 1st `  y ) `  z
) )
10 fveq2 5486 . . . 4  |-  ( w  =  z  ->  (
( 2nd `  y
) `  w )  =  ( ( 2nd `  y ) `  z
) )
119, 10opeq12d 3766 . . 3  |-  ( w  =  z  ->  <. (
( 1st `  y
) `  w ) ,  ( ( 2nd `  y ) `  w
) >.  =  <. (
( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
1211cbvmptv 4078 . 2  |-  ( w  e.  C  |->  <. (
( 1st `  y
) `  w ) ,  ( ( 2nd `  y ) `  w
) >. )  =  ( z  e.  C  |->  <.
( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
131, 2, 3, 6, 8, 12xpmapenlem 6815 1  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726   <.cop 3579   class class class wbr 3982    |-> cmpt 4043    X. cxp 4602   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107    ^m cmap 6614    ~~ cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-en 6707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator