ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmapen Unicode version

Theorem xpmapen 6850
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1  |-  A  e. 
_V
xpmapen.2  |-  B  e. 
_V
xpmapen.3  |-  C  e. 
_V
Assertion
Ref Expression
xpmapen  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )

Proof of Theorem xpmapen
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmapen.1 . 2  |-  A  e. 
_V
2 xpmapen.2 . 2  |-  B  e. 
_V
3 xpmapen.3 . 2  |-  C  e. 
_V
4 fveq2 5516 . . . 4  |-  ( w  =  z  ->  (
x `  w )  =  ( x `  z ) )
54fveq2d 5520 . . 3  |-  ( w  =  z  ->  ( 1st `  ( x `  w ) )  =  ( 1st `  (
x `  z )
) )
65cbvmptv 4100 . 2  |-  ( w  e.  C  |->  ( 1st `  ( x `  w
) ) )  =  ( z  e.  C  |->  ( 1st `  (
x `  z )
) )
74fveq2d 5520 . . 3  |-  ( w  =  z  ->  ( 2nd `  ( x `  w ) )  =  ( 2nd `  (
x `  z )
) )
87cbvmptv 4100 . 2  |-  ( w  e.  C  |->  ( 2nd `  ( x `  w
) ) )  =  ( z  e.  C  |->  ( 2nd `  (
x `  z )
) )
9 fveq2 5516 . . . 4  |-  ( w  =  z  ->  (
( 1st `  y
) `  w )  =  ( ( 1st `  y ) `  z
) )
10 fveq2 5516 . . . 4  |-  ( w  =  z  ->  (
( 2nd `  y
) `  w )  =  ( ( 2nd `  y ) `  z
) )
119, 10opeq12d 3787 . . 3  |-  ( w  =  z  ->  <. (
( 1st `  y
) `  w ) ,  ( ( 2nd `  y ) `  w
) >.  =  <. (
( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
1211cbvmptv 4100 . 2  |-  ( w  e.  C  |->  <. (
( 1st `  y
) `  w ) ,  ( ( 2nd `  y ) `  w
) >. )  =  ( z  e.  C  |->  <.
( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
131, 2, 3, 6, 8, 12xpmapenlem 6849 1  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2738   <.cop 3596   class class class wbr 4004    |-> cmpt 4065    X. cxp 4625   ` cfv 5217  (class class class)co 5875   1stc1st 6139   2ndc2nd 6140    ^m cmap 6648    ~~ cen 6738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-en 6741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator