ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmapen Unicode version

Theorem xpmapen 6920
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1  |-  A  e. 
_V
xpmapen.2  |-  B  e. 
_V
xpmapen.3  |-  C  e. 
_V
Assertion
Ref Expression
xpmapen  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )

Proof of Theorem xpmapen
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmapen.1 . 2  |-  A  e. 
_V
2 xpmapen.2 . 2  |-  B  e. 
_V
3 xpmapen.3 . 2  |-  C  e. 
_V
4 fveq2 5561 . . . 4  |-  ( w  =  z  ->  (
x `  w )  =  ( x `  z ) )
54fveq2d 5565 . . 3  |-  ( w  =  z  ->  ( 1st `  ( x `  w ) )  =  ( 1st `  (
x `  z )
) )
65cbvmptv 4130 . 2  |-  ( w  e.  C  |->  ( 1st `  ( x `  w
) ) )  =  ( z  e.  C  |->  ( 1st `  (
x `  z )
) )
74fveq2d 5565 . . 3  |-  ( w  =  z  ->  ( 2nd `  ( x `  w ) )  =  ( 2nd `  (
x `  z )
) )
87cbvmptv 4130 . 2  |-  ( w  e.  C  |->  ( 2nd `  ( x `  w
) ) )  =  ( z  e.  C  |->  ( 2nd `  (
x `  z )
) )
9 fveq2 5561 . . . 4  |-  ( w  =  z  ->  (
( 1st `  y
) `  w )  =  ( ( 1st `  y ) `  z
) )
10 fveq2 5561 . . . 4  |-  ( w  =  z  ->  (
( 2nd `  y
) `  w )  =  ( ( 2nd `  y ) `  z
) )
119, 10opeq12d 3817 . . 3  |-  ( w  =  z  ->  <. (
( 1st `  y
) `  w ) ,  ( ( 2nd `  y ) `  w
) >.  =  <. (
( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
1211cbvmptv 4130 . 2  |-  ( w  e.  C  |->  <. (
( 1st `  y
) `  w ) ,  ( ( 2nd `  y ) `  w
) >. )  =  ( z  e.  C  |->  <.
( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
131, 2, 3, 6, 8, 12xpmapenlem 6919 1  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   <.cop 3626   class class class wbr 4034    |-> cmpt 4095    X. cxp 4662   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206    ^m cmap 6716    ~~ cen 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-en 6809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator