Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpmapen | Unicode version |
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
xpmapen.1 | |
xpmapen.2 | |
xpmapen.3 |
Ref | Expression |
---|---|
xpmapen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpmapen.1 | . 2 | |
2 | xpmapen.2 | . 2 | |
3 | xpmapen.3 | . 2 | |
4 | fveq2 5507 | . . . 4 | |
5 | 4 | fveq2d 5511 | . . 3 |
6 | 5 | cbvmptv 4094 | . 2 |
7 | 4 | fveq2d 5511 | . . 3 |
8 | 7 | cbvmptv 4094 | . 2 |
9 | fveq2 5507 | . . . 4 | |
10 | fveq2 5507 | . . . 4 | |
11 | 9, 10 | opeq12d 3782 | . . 3 |
12 | 11 | cbvmptv 4094 | . 2 |
13 | 1, 2, 3, 6, 8, 12 | xpmapenlem 6839 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 cvv 2735 cop 3592 class class class wbr 3998 cmpt 4059 cxp 4618 cfv 5208 (class class class)co 5865 c1st 6129 c2nd 6130 cmap 6638 cen 6728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-en 6731 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |