ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmapen GIF version

Theorem xpmapen 7007
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1 𝐴 ∈ V
xpmapen.2 𝐵 ∈ V
xpmapen.3 𝐶 ∈ V
Assertion
Ref Expression
xpmapen ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))

Proof of Theorem xpmapen
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmapen.1 . 2 𝐴 ∈ V
2 xpmapen.2 . 2 𝐵 ∈ V
3 xpmapen.3 . 2 𝐶 ∈ V
4 fveq2 5626 . . . 4 (𝑤 = 𝑧 → (𝑥𝑤) = (𝑥𝑧))
54fveq2d 5630 . . 3 (𝑤 = 𝑧 → (1st ‘(𝑥𝑤)) = (1st ‘(𝑥𝑧)))
65cbvmptv 4179 . 2 (𝑤𝐶 ↦ (1st ‘(𝑥𝑤))) = (𝑧𝐶 ↦ (1st ‘(𝑥𝑧)))
74fveq2d 5630 . . 3 (𝑤 = 𝑧 → (2nd ‘(𝑥𝑤)) = (2nd ‘(𝑥𝑧)))
87cbvmptv 4179 . 2 (𝑤𝐶 ↦ (2nd ‘(𝑥𝑤))) = (𝑧𝐶 ↦ (2nd ‘(𝑥𝑧)))
9 fveq2 5626 . . . 4 (𝑤 = 𝑧 → ((1st𝑦)‘𝑤) = ((1st𝑦)‘𝑧))
10 fveq2 5626 . . . 4 (𝑤 = 𝑧 → ((2nd𝑦)‘𝑤) = ((2nd𝑦)‘𝑧))
119, 10opeq12d 3864 . . 3 (𝑤 = 𝑧 → ⟨((1st𝑦)‘𝑤), ((2nd𝑦)‘𝑤)⟩ = ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
1211cbvmptv 4179 . 2 (𝑤𝐶 ↦ ⟨((1st𝑦)‘𝑤), ((2nd𝑦)‘𝑤)⟩) = (𝑧𝐶 ↦ ⟨((1st𝑦)‘𝑧), ((2nd𝑦)‘𝑧)⟩)
131, 2, 3, 6, 8, 12xpmapenlem 7006 1 ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴𝑚 𝐶) × (𝐵𝑚 𝐶))
Colors of variables: wff set class
Syntax hints:  wcel 2200  Vcvv 2799  cop 3669   class class class wbr 4082  cmpt 4144   × cxp 4716  cfv 5317  (class class class)co 6000  1st c1st 6282  2nd c2nd 6283  𝑚 cmap 6793  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-en 6886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator