| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpmapen | GIF version | ||
| Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpmapen.1 | ⊢ 𝐴 ∈ V |
| xpmapen.2 | ⊢ 𝐵 ∈ V |
| xpmapen.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| xpmapen | ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpmapen.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | xpmapen.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | xpmapen.3 | . 2 ⊢ 𝐶 ∈ V | |
| 4 | fveq2 5626 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥‘𝑤) = (𝑥‘𝑧)) | |
| 5 | 4 | fveq2d 5630 | . . 3 ⊢ (𝑤 = 𝑧 → (1st ‘(𝑥‘𝑤)) = (1st ‘(𝑥‘𝑧))) |
| 6 | 5 | cbvmptv 4179 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) |
| 7 | 4 | fveq2d 5630 | . . 3 ⊢ (𝑤 = 𝑧 → (2nd ‘(𝑥‘𝑤)) = (2nd ‘(𝑥‘𝑧))) |
| 8 | 7 | cbvmptv 4179 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) |
| 9 | fveq2 5626 | . . . 4 ⊢ (𝑤 = 𝑧 → ((1st ‘𝑦)‘𝑤) = ((1st ‘𝑦)‘𝑧)) | |
| 10 | fveq2 5626 | . . . 4 ⊢ (𝑤 = 𝑧 → ((2nd ‘𝑦)‘𝑤) = ((2nd ‘𝑦)‘𝑧)) | |
| 11 | 9, 10 | opeq12d 3864 | . . 3 ⊢ (𝑤 = 𝑧 → 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉 = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
| 12 | 11 | cbvmptv 4179 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉) = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
| 13 | 1, 2, 3, 6, 8, 12 | xpmapenlem 7006 | 1 ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 〈cop 3669 class class class wbr 4082 ↦ cmpt 4144 × cxp 4716 ‘cfv 5317 (class class class)co 6000 1st c1st 6282 2nd c2nd 6283 ↑𝑚 cmap 6793 ≈ cen 6883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-en 6886 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |