![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpmapen | GIF version |
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
xpmapen.1 | ⊢ 𝐴 ∈ V |
xpmapen.2 | ⊢ 𝐵 ∈ V |
xpmapen.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
xpmapen | ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpmapen.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpmapen.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpmapen.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | fveq2 5517 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥‘𝑤) = (𝑥‘𝑧)) | |
5 | 4 | fveq2d 5521 | . . 3 ⊢ (𝑤 = 𝑧 → (1st ‘(𝑥‘𝑤)) = (1st ‘(𝑥‘𝑧))) |
6 | 5 | cbvmptv 4101 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) |
7 | 4 | fveq2d 5521 | . . 3 ⊢ (𝑤 = 𝑧 → (2nd ‘(𝑥‘𝑤)) = (2nd ‘(𝑥‘𝑧))) |
8 | 7 | cbvmptv 4101 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) |
9 | fveq2 5517 | . . . 4 ⊢ (𝑤 = 𝑧 → ((1st ‘𝑦)‘𝑤) = ((1st ‘𝑦)‘𝑧)) | |
10 | fveq2 5517 | . . . 4 ⊢ (𝑤 = 𝑧 → ((2nd ‘𝑦)‘𝑤) = ((2nd ‘𝑦)‘𝑧)) | |
11 | 9, 10 | opeq12d 3788 | . . 3 ⊢ (𝑤 = 𝑧 → ⟨((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)⟩ = ⟨((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)⟩) |
12 | 11 | cbvmptv 4101 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ ⟨((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)⟩) = (𝑧 ∈ 𝐶 ↦ ⟨((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)⟩) |
13 | 1, 2, 3, 6, 8, 12 | xpmapenlem 6852 | 1 ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 class class class wbr 4005 ↦ cmpt 4066 × cxp 4626 ‘cfv 5218 (class class class)co 5878 1st c1st 6142 2nd c2nd 6143 ↑𝑚 cmap 6651 ≈ cen 6741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-map 6653 df-en 6744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |