Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpmapen | GIF version |
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
xpmapen.1 | ⊢ 𝐴 ∈ V |
xpmapen.2 | ⊢ 𝐵 ∈ V |
xpmapen.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
xpmapen | ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpmapen.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpmapen.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpmapen.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | fveq2 5496 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥‘𝑤) = (𝑥‘𝑧)) | |
5 | 4 | fveq2d 5500 | . . 3 ⊢ (𝑤 = 𝑧 → (1st ‘(𝑥‘𝑤)) = (1st ‘(𝑥‘𝑧))) |
6 | 5 | cbvmptv 4085 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) |
7 | 4 | fveq2d 5500 | . . 3 ⊢ (𝑤 = 𝑧 → (2nd ‘(𝑥‘𝑤)) = (2nd ‘(𝑥‘𝑧))) |
8 | 7 | cbvmptv 4085 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) |
9 | fveq2 5496 | . . . 4 ⊢ (𝑤 = 𝑧 → ((1st ‘𝑦)‘𝑤) = ((1st ‘𝑦)‘𝑧)) | |
10 | fveq2 5496 | . . . 4 ⊢ (𝑤 = 𝑧 → ((2nd ‘𝑦)‘𝑤) = ((2nd ‘𝑦)‘𝑧)) | |
11 | 9, 10 | opeq12d 3773 | . . 3 ⊢ (𝑤 = 𝑧 → 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉 = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
12 | 11 | cbvmptv 4085 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉) = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
13 | 1, 2, 3, 6, 8, 12 | xpmapenlem 6827 | 1 ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 〈cop 3586 class class class wbr 3989 ↦ cmpt 4050 × cxp 4609 ‘cfv 5198 (class class class)co 5853 1st c1st 6117 2nd c2nd 6118 ↑𝑚 cmap 6626 ≈ cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-en 6719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |