ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpmapenlem Unicode version

Theorem xpmapenlem 6905
Description: Lemma for xpmapen 6906. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
xpmapen.1  |-  A  e. 
_V
xpmapen.2  |-  B  e. 
_V
xpmapen.3  |-  C  e. 
_V
xpmapenlem.4  |-  D  =  ( z  e.  C  |->  ( 1st `  (
x `  z )
) )
xpmapenlem.5  |-  R  =  ( z  e.  C  |->  ( 2nd `  (
x `  z )
) )
xpmapenlem.6  |-  S  =  ( z  e.  C  |-> 
<. ( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
Assertion
Ref Expression
xpmapenlem  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    y, D, z   
y, R, z    x, S, z
Allowed substitution hints:    D( x)    R( x)    S( y)

Proof of Theorem xpmapenlem
StepHypRef Expression
1 fnmap 6709 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 xpmapen.1 . . . 4  |-  A  e. 
_V
3 xpmapen.2 . . . 4  |-  B  e. 
_V
42, 3xpex 4774 . . 3  |-  ( A  X.  B )  e. 
_V
5 xpmapen.3 . . 3  |-  C  e. 
_V
6 fnovex 5951 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( A  X.  B )  e. 
_V  /\  C  e.  _V )  ->  ( ( A  X.  B )  ^m  C )  e. 
_V )
71, 4, 5, 6mp3an 1348 . 2  |-  ( ( A  X.  B )  ^m  C )  e. 
_V
8 fnovex 5951 . . . 4  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  A  e.  _V  /\  C  e. 
_V )  ->  ( A  ^m  C )  e. 
_V )
91, 2, 5, 8mp3an 1348 . . 3  |-  ( A  ^m  C )  e. 
_V
10 fnovex 5951 . . . 4  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  B  e.  _V  /\  C  e. 
_V )  ->  ( B  ^m  C )  e. 
_V )
111, 3, 5, 10mp3an 1348 . . 3  |-  ( B  ^m  C )  e. 
_V
129, 11xpex 4774 . 2  |-  ( ( A  ^m  C )  X.  ( B  ^m  C ) )  e. 
_V
134, 5elmap 6731 . . . . . . 7  |-  ( x  e.  ( ( A  X.  B )  ^m  C )  <->  x : C
--> ( A  X.  B
) )
14 ffvelcdm 5691 . . . . . . 7  |-  ( ( x : C --> ( A  X.  B )  /\  z  e.  C )  ->  ( x `  z
)  e.  ( A  X.  B ) )
1513, 14sylanb 284 . . . . . 6  |-  ( ( x  e.  ( ( A  X.  B )  ^m  C )  /\  z  e.  C )  ->  ( x `  z
)  e.  ( A  X.  B ) )
16 xp1st 6218 . . . . . 6  |-  ( ( x `  z )  e.  ( A  X.  B )  ->  ( 1st `  ( x `  z ) )  e.  A )
1715, 16syl 14 . . . . 5  |-  ( ( x  e.  ( ( A  X.  B )  ^m  C )  /\  z  e.  C )  ->  ( 1st `  (
x `  z )
)  e.  A )
18 xpmapenlem.4 . . . . 5  |-  D  =  ( z  e.  C  |->  ( 1st `  (
x `  z )
) )
1917, 18fmptd 5712 . . . 4  |-  ( x  e.  ( ( A  X.  B )  ^m  C )  ->  D : C --> A )
202, 5elmap 6731 . . . 4  |-  ( D  e.  ( A  ^m  C )  <->  D : C
--> A )
2119, 20sylibr 134 . . 3  |-  ( x  e.  ( ( A  X.  B )  ^m  C )  ->  D  e.  ( A  ^m  C
) )
22 xp2nd 6219 . . . . . 6  |-  ( ( x `  z )  e.  ( A  X.  B )  ->  ( 2nd `  ( x `  z ) )  e.  B )
2315, 22syl 14 . . . . 5  |-  ( ( x  e.  ( ( A  X.  B )  ^m  C )  /\  z  e.  C )  ->  ( 2nd `  (
x `  z )
)  e.  B )
24 xpmapenlem.5 . . . . 5  |-  R  =  ( z  e.  C  |->  ( 2nd `  (
x `  z )
) )
2523, 24fmptd 5712 . . . 4  |-  ( x  e.  ( ( A  X.  B )  ^m  C )  ->  R : C --> B )
263, 5elmap 6731 . . . 4  |-  ( R  e.  ( B  ^m  C )  <->  R : C
--> B )
2725, 26sylibr 134 . . 3  |-  ( x  e.  ( ( A  X.  B )  ^m  C )  ->  R  e.  ( B  ^m  C
) )
28 opelxpi 4691 . . 3  |-  ( ( D  e.  ( A  ^m  C )  /\  R  e.  ( B  ^m  C ) )  ->  <. D ,  R >.  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )
2921, 27, 28syl2anc 411 . 2  |-  ( x  e.  ( ( A  X.  B )  ^m  C )  ->  <. D ,  R >.  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )
30 xp1st 6218 . . . . . . 7  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  ( 1st `  y )  e.  ( A  ^m  C
) )
312, 5elmap 6731 . . . . . . 7  |-  ( ( 1st `  y )  e.  ( A  ^m  C )  <->  ( 1st `  y ) : C --> A )
3230, 31sylib 122 . . . . . 6  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  ( 1st `  y ) : C --> A )
3332ffvelcdmda 5693 . . . . 5  |-  ( ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) )  /\  z  e.  C )  ->  ( ( 1st `  y
) `  z )  e.  A )
34 xp2nd 6219 . . . . . . 7  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  ( 2nd `  y )  e.  ( B  ^m  C
) )
353, 5elmap 6731 . . . . . . 7  |-  ( ( 2nd `  y )  e.  ( B  ^m  C )  <->  ( 2nd `  y ) : C --> B )
3634, 35sylib 122 . . . . . 6  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  ( 2nd `  y ) : C --> B )
3736ffvelcdmda 5693 . . . . 5  |-  ( ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) )  /\  z  e.  C )  ->  ( ( 2nd `  y
) `  z )  e.  B )
38 opelxpi 4691 . . . . 5  |-  ( ( ( ( 1st `  y
) `  z )  e.  A  /\  (
( 2nd `  y
) `  z )  e.  B )  ->  <. (
( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >.  e.  ( A  X.  B ) )
3933, 37, 38syl2anc 411 . . . 4  |-  ( ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) )  /\  z  e.  C )  -> 
<. ( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >.  e.  ( A  X.  B ) )
40 xpmapenlem.6 . . . 4  |-  S  =  ( z  e.  C  |-> 
<. ( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
4139, 40fmptd 5712 . . 3  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  S : C --> ( A  X.  B ) )
424, 5elmap 6731 . . 3  |-  ( S  e.  ( ( A  X.  B )  ^m  C )  <->  S : C
--> ( A  X.  B
) )
4341, 42sylibr 134 . 2  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  S  e.  ( ( A  X.  B )  ^m  C
) )
44 1st2nd2 6228 . . . . 5  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
4544ad2antlr 489 . . . 4  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
4632feqmptd 5610 . . . . . . 7  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  ( 1st `  y )  =  ( z  e.  C  |->  ( ( 1st `  y
) `  z )
) )
4746ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  ( 1st `  y )  =  ( z  e.  C  |->  ( ( 1st `  y
) `  z )
) )
48 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  x  =  S )  /\  z  e.  C )  ->  x  =  S )
4948fveq1d 5556 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  x  =  S )  /\  z  e.  C )  ->  (
x `  z )  =  ( S `  z ) )
50 vex 2763 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
51 1stexg 6220 . . . . . . . . . . . . . . . 16  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
5250, 51ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 1st `  y )  e.  _V
53 vex 2763 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
5452, 53fvex 5574 . . . . . . . . . . . . . 14  |-  ( ( 1st `  y ) `
 z )  e. 
_V
55 2ndexg 6221 . . . . . . . . . . . . . . . 16  |-  ( y  e.  _V  ->  ( 2nd `  y )  e. 
_V )
5650, 55ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 2nd `  y )  e.  _V
5756, 53fvex 5574 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  y ) `
 z )  e. 
_V
5854, 57opex 4258 . . . . . . . . . . . . 13  |-  <. (
( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >.  e.  _V
5940fvmpt2 5641 . . . . . . . . . . . . 13  |-  ( ( z  e.  C  /\  <.
( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >.  e.  _V )  ->  ( S `  z
)  =  <. (
( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. )
6058, 59mpan2 425 . . . . . . . . . . . 12  |-  ( z  e.  C  ->  ( S `  z )  =  <. ( ( 1st `  y ) `  z
) ,  ( ( 2nd `  y ) `
 z ) >.
)
6160adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  x  =  S )  /\  z  e.  C )  ->  ( S `  z )  =  <. ( ( 1st `  y ) `  z
) ,  ( ( 2nd `  y ) `
 z ) >.
)
6249, 61eqtrd 2226 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  x  =  S )  /\  z  e.  C )  ->  (
x `  z )  =  <. ( ( 1st `  y ) `  z
) ,  ( ( 2nd `  y ) `
 z ) >.
)
6362fveq2d 5558 . . . . . . . . 9  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  x  =  S )  /\  z  e.  C )  ->  ( 1st `  ( x `  z ) )  =  ( 1st `  <. ( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. ) )
6454, 57op1st 6199 . . . . . . . . 9  |-  ( 1st `  <. ( ( 1st `  y ) `  z
) ,  ( ( 2nd `  y ) `
 z ) >.
)  =  ( ( 1st `  y ) `
 z )
6563, 64eqtrdi 2242 . . . . . . . 8  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  x  =  S )  /\  z  e.  C )  ->  ( 1st `  ( x `  z ) )  =  ( ( 1st `  y
) `  z )
)
6665mpteq2dva 4119 . . . . . . 7  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  (
z  e.  C  |->  ( 1st `  ( x `
 z ) ) )  =  ( z  e.  C  |->  ( ( 1st `  y ) `
 z ) ) )
6718, 66eqtrid 2238 . . . . . 6  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  D  =  ( z  e.  C  |->  ( ( 1st `  y ) `  z
) ) )
6847, 67eqtr4d 2229 . . . . 5  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  ( 1st `  y )  =  D )
6936feqmptd 5610 . . . . . . 7  |-  ( y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) )  ->  ( 2nd `  y )  =  ( z  e.  C  |->  ( ( 2nd `  y
) `  z )
) )
7069ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  ( 2nd `  y )  =  ( z  e.  C  |->  ( ( 2nd `  y
) `  z )
) )
7162fveq2d 5558 . . . . . . . . 9  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  x  =  S )  /\  z  e.  C )  ->  ( 2nd `  ( x `  z ) )  =  ( 2nd `  <. ( ( 1st `  y
) `  z ) ,  ( ( 2nd `  y ) `  z
) >. ) )
7254, 57op2nd 6200 . . . . . . . . 9  |-  ( 2nd `  <. ( ( 1st `  y ) `  z
) ,  ( ( 2nd `  y ) `
 z ) >.
)  =  ( ( 2nd `  y ) `
 z )
7371, 72eqtrdi 2242 . . . . . . . 8  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  x  =  S )  /\  z  e.  C )  ->  ( 2nd `  ( x `  z ) )  =  ( ( 2nd `  y
) `  z )
)
7473mpteq2dva 4119 . . . . . . 7  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  (
z  e.  C  |->  ( 2nd `  ( x `
 z ) ) )  =  ( z  e.  C  |->  ( ( 2nd `  y ) `
 z ) ) )
7524, 74eqtrid 2238 . . . . . 6  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  R  =  ( z  e.  C  |->  ( ( 2nd `  y ) `  z
) ) )
7670, 75eqtr4d 2229 . . . . 5  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  ( 2nd `  y )  =  R )
7768, 76opeq12d 3812 . . . 4  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  =  <. D ,  R >. )
7845, 77eqtrd 2226 . . 3  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  x  =  S )  ->  y  =  <. D ,  R >. )
79 simpll 527 . . . . . 6  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  x  e.  ( ( A  X.  B
)  ^m  C )
)
8079, 13sylib 122 . . . . 5  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  x : C --> ( A  X.  B
) )
8180feqmptd 5610 . . . 4  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  x  =  ( z  e.  C  |->  ( x `  z ) ) )
82 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  y  =  <. D ,  R >. )
8382fveq2d 5558 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( 1st `  y
)  =  ( 1st `  <. D ,  R >. ) )
8421ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  D  e.  ( A  ^m  C ) )
8527ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  R  e.  ( B  ^m  C ) )
86 op1stg 6203 . . . . . . . . . . . 12  |-  ( ( D  e.  ( A  ^m  C )  /\  R  e.  ( B  ^m  C ) )  -> 
( 1st `  <. D ,  R >. )  =  D )
8784, 85, 86syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( 1st `  <. D ,  R >. )  =  D )
8883, 87eqtrd 2226 . . . . . . . . . 10  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( 1st `  y
)  =  D )
8988fveq1d 5556 . . . . . . . . 9  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( ( 1st `  y ) `  z
)  =  ( D `
 z ) )
90 vex 2763 . . . . . . . . . . . 12  |-  x  e. 
_V
9190, 53fvex 5574 . . . . . . . . . . 11  |-  ( x `
 z )  e. 
_V
92 1stexg 6220 . . . . . . . . . . 11  |-  ( ( x `  z )  e.  _V  ->  ( 1st `  ( x `  z ) )  e. 
_V )
9391, 92ax-mp 5 . . . . . . . . . 10  |-  ( 1st `  ( x `  z
) )  e.  _V
9418fvmpt2 5641 . . . . . . . . . 10  |-  ( ( z  e.  C  /\  ( 1st `  ( x `
 z ) )  e.  _V )  -> 
( D `  z
)  =  ( 1st `  ( x `  z
) ) )
9593, 94mpan2 425 . . . . . . . . 9  |-  ( z  e.  C  ->  ( D `  z )  =  ( 1st `  (
x `  z )
) )
9689, 95sylan9eq 2246 . . . . . . . 8  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  /\  z  e.  C
)  ->  ( ( 1st `  y ) `  z )  =  ( 1st `  ( x `
 z ) ) )
9782fveq2d 5558 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( 2nd `  y
)  =  ( 2nd `  <. D ,  R >. ) )
98 op2ndg 6204 . . . . . . . . . . . 12  |-  ( ( D  e.  ( A  ^m  C )  /\  R  e.  ( B  ^m  C ) )  -> 
( 2nd `  <. D ,  R >. )  =  R )
9984, 85, 98syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( 2nd `  <. D ,  R >. )  =  R )
10097, 99eqtrd 2226 . . . . . . . . . 10  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( 2nd `  y
)  =  R )
101100fveq1d 5556 . . . . . . . . 9  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( ( 2nd `  y ) `  z
)  =  ( R `
 z ) )
102 2ndexg 6221 . . . . . . . . . . 11  |-  ( ( x `  z )  e.  _V  ->  ( 2nd `  ( x `  z ) )  e. 
_V )
10391, 102ax-mp 5 . . . . . . . . . 10  |-  ( 2nd `  ( x `  z
) )  e.  _V
10424fvmpt2 5641 . . . . . . . . . 10  |-  ( ( z  e.  C  /\  ( 2nd `  ( x `
 z ) )  e.  _V )  -> 
( R `  z
)  =  ( 2nd `  ( x `  z
) ) )
105103, 104mpan2 425 . . . . . . . . 9  |-  ( z  e.  C  ->  ( R `  z )  =  ( 2nd `  (
x `  z )
) )
106101, 105sylan9eq 2246 . . . . . . . 8  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  /\  z  e.  C
)  ->  ( ( 2nd `  y ) `  z )  =  ( 2nd `  ( x `
 z ) ) )
10796, 106opeq12d 3812 . . . . . . 7  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  /\  z  e.  C
)  ->  <. ( ( 1st `  y ) `
 z ) ,  ( ( 2nd `  y
) `  z ) >.  =  <. ( 1st `  (
x `  z )
) ,  ( 2nd `  ( x `  z
) ) >. )
10880ffvelcdmda 5693 . . . . . . . 8  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  /\  z  e.  C
)  ->  ( x `  z )  e.  ( A  X.  B ) )
109 1st2nd2 6228 . . . . . . . 8  |-  ( ( x `  z )  e.  ( A  X.  B )  ->  (
x `  z )  =  <. ( 1st `  (
x `  z )
) ,  ( 2nd `  ( x `  z
) ) >. )
110108, 109syl 14 . . . . . . 7  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  /\  z  e.  C
)  ->  ( x `  z )  =  <. ( 1st `  ( x `
 z ) ) ,  ( 2nd `  (
x `  z )
) >. )
111107, 110eqtr4d 2229 . . . . . 6  |-  ( ( ( ( x  e.  ( ( A  X.  B )  ^m  C
)  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  /\  z  e.  C
)  ->  <. ( ( 1st `  y ) `
 z ) ,  ( ( 2nd `  y
) `  z ) >.  =  ( x `  z ) )
112111mpteq2dva 4119 . . . . 5  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  ( z  e.  C  |->  <. ( ( 1st `  y ) `  z
) ,  ( ( 2nd `  y ) `
 z ) >.
)  =  ( z  e.  C  |->  ( x `
 z ) ) )
11340, 112eqtrid 2238 . . . 4  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  S  =  ( z  e.  C  |->  ( x `  z ) ) )
11481, 113eqtr4d 2229 . . 3  |-  ( ( ( x  e.  ( ( A  X.  B
)  ^m  C )  /\  y  e.  (
( A  ^m  C
)  X.  ( B  ^m  C ) ) )  /\  y  = 
<. D ,  R >. )  ->  x  =  S )
11578, 114impbida 596 . 2  |-  ( ( x  e.  ( ( A  X.  B )  ^m  C )  /\  y  e.  ( ( A  ^m  C )  X.  ( B  ^m  C
) ) )  -> 
( x  =  S  <-> 
y  =  <. D ,  R >. ) )
1167, 12, 29, 43, 115en3i 6825 1  |-  ( ( A  X.  B )  ^m  C )  ~~  ( ( A  ^m  C )  X.  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3621   class class class wbr 4029    |-> cmpt 4090    X. cxp 4657    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918   1stc1st 6191   2ndc2nd 6192    ^m cmap 6702    ~~ cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-en 6795
This theorem is referenced by:  xpmapen  6906
  Copyright terms: Public domain W3C validator