Proof of Theorem xpmapenlem
Step | Hyp | Ref
| Expression |
1 | | fnmap 6621 |
. . 3
|
2 | | xpmapen.1 |
. . . 4
|
3 | | xpmapen.2 |
. . . 4
|
4 | 2, 3 | xpex 4719 |
. . 3
|
5 | | xpmapen.3 |
. . 3
|
6 | | fnovex 5875 |
. . 3
|
7 | 1, 4, 5, 6 | mp3an 1327 |
. 2
|
8 | | fnovex 5875 |
. . . 4
|
9 | 1, 2, 5, 8 | mp3an 1327 |
. . 3
|
10 | | fnovex 5875 |
. . . 4
|
11 | 1, 3, 5, 10 | mp3an 1327 |
. . 3
|
12 | 9, 11 | xpex 4719 |
. 2
|
13 | 4, 5 | elmap 6643 |
. . . . . . 7
|
14 | | ffvelrn 5618 |
. . . . . . 7
|
15 | 13, 14 | sylanb 282 |
. . . . . 6
|
16 | | xp1st 6133 |
. . . . . 6
|
17 | 15, 16 | syl 14 |
. . . . 5
|
18 | | xpmapenlem.4 |
. . . . 5
|
19 | 17, 18 | fmptd 5639 |
. . . 4
|
20 | 2, 5 | elmap 6643 |
. . . 4
|
21 | 19, 20 | sylibr 133 |
. . 3
|
22 | | xp2nd 6134 |
. . . . . 6
|
23 | 15, 22 | syl 14 |
. . . . 5
|
24 | | xpmapenlem.5 |
. . . . 5
|
25 | 23, 24 | fmptd 5639 |
. . . 4
|
26 | 3, 5 | elmap 6643 |
. . . 4
|
27 | 25, 26 | sylibr 133 |
. . 3
|
28 | | opelxpi 4636 |
. . 3
|
29 | 21, 27, 28 | syl2anc 409 |
. 2
|
30 | | xp1st 6133 |
. . . . . . 7
|
31 | 2, 5 | elmap 6643 |
. . . . . . 7
|
32 | 30, 31 | sylib 121 |
. . . . . 6
|
33 | 32 | ffvelrnda 5620 |
. . . . 5
|
34 | | xp2nd 6134 |
. . . . . . 7
|
35 | 3, 5 | elmap 6643 |
. . . . . . 7
|
36 | 34, 35 | sylib 121 |
. . . . . 6
|
37 | 36 | ffvelrnda 5620 |
. . . . 5
|
38 | | opelxpi 4636 |
. . . . 5
|
39 | 33, 37, 38 | syl2anc 409 |
. . . 4
|
40 | | xpmapenlem.6 |
. . . 4
|
41 | 39, 40 | fmptd 5639 |
. . 3
|
42 | 4, 5 | elmap 6643 |
. . 3
|
43 | 41, 42 | sylibr 133 |
. 2
|
44 | | 1st2nd2 6143 |
. . . . 5
|
45 | 44 | ad2antlr 481 |
. . . 4
|
46 | 32 | feqmptd 5539 |
. . . . . . 7
|
47 | 46 | ad2antlr 481 |
. . . . . 6
|
48 | | simplr 520 |
. . . . . . . . . . . 12
|
49 | 48 | fveq1d 5488 |
. . . . . . . . . . 11
|
50 | | vex 2729 |
. . . . . . . . . . . . . . . 16
|
51 | | 1stexg 6135 |
. . . . . . . . . . . . . . . 16
|
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
53 | | vex 2729 |
. . . . . . . . . . . . . . 15
|
54 | 52, 53 | fvex 5506 |
. . . . . . . . . . . . . 14
|
55 | | 2ndexg 6136 |
. . . . . . . . . . . . . . . 16
|
56 | 50, 55 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
57 | 56, 53 | fvex 5506 |
. . . . . . . . . . . . . 14
|
58 | 54, 57 | opex 4207 |
. . . . . . . . . . . . 13
|
59 | 40 | fvmpt2 5569 |
. . . . . . . . . . . . 13
|
60 | 58, 59 | mpan2 422 |
. . . . . . . . . . . 12
|
61 | 60 | adantl 275 |
. . . . . . . . . . 11
|
62 | 49, 61 | eqtrd 2198 |
. . . . . . . . . 10
|
63 | 62 | fveq2d 5490 |
. . . . . . . . 9
|
64 | 54, 57 | op1st 6114 |
. . . . . . . . 9
|
65 | 63, 64 | eqtrdi 2215 |
. . . . . . . 8
|
66 | 65 | mpteq2dva 4072 |
. . . . . . 7
|
67 | 18, 66 | syl5eq 2211 |
. . . . . 6
|
68 | 47, 67 | eqtr4d 2201 |
. . . . 5
|
69 | 36 | feqmptd 5539 |
. . . . . . 7
|
70 | 69 | ad2antlr 481 |
. . . . . 6
|
71 | 62 | fveq2d 5490 |
. . . . . . . . 9
|
72 | 54, 57 | op2nd 6115 |
. . . . . . . . 9
|
73 | 71, 72 | eqtrdi 2215 |
. . . . . . . 8
|
74 | 73 | mpteq2dva 4072 |
. . . . . . 7
|
75 | 24, 74 | syl5eq 2211 |
. . . . . 6
|
76 | 70, 75 | eqtr4d 2201 |
. . . . 5
|
77 | 68, 76 | opeq12d 3766 |
. . . 4
|
78 | 45, 77 | eqtrd 2198 |
. . 3
|
79 | | simpll 519 |
. . . . . 6
|
80 | 79, 13 | sylib 121 |
. . . . 5
|
81 | 80 | feqmptd 5539 |
. . . 4
|
82 | | simpr 109 |
. . . . . . . . . . . 12
|
83 | 82 | fveq2d 5490 |
. . . . . . . . . . 11
|
84 | 21 | ad2antrr 480 |
. . . . . . . . . . . 12
|
85 | 27 | ad2antrr 480 |
. . . . . . . . . . . 12
|
86 | | op1stg 6118 |
. . . . . . . . . . . 12
|
87 | 84, 85, 86 | syl2anc 409 |
. . . . . . . . . . 11
|
88 | 83, 87 | eqtrd 2198 |
. . . . . . . . . 10
|
89 | 88 | fveq1d 5488 |
. . . . . . . . 9
|
90 | | vex 2729 |
. . . . . . . . . . . 12
|
91 | 90, 53 | fvex 5506 |
. . . . . . . . . . 11
|
92 | | 1stexg 6135 |
. . . . . . . . . . 11
|
93 | 91, 92 | ax-mp 5 |
. . . . . . . . . 10
|
94 | 18 | fvmpt2 5569 |
. . . . . . . . . 10
|
95 | 93, 94 | mpan2 422 |
. . . . . . . . 9
|
96 | 89, 95 | sylan9eq 2219 |
. . . . . . . 8
|
97 | 82 | fveq2d 5490 |
. . . . . . . . . . 11
|
98 | | op2ndg 6119 |
. . . . . . . . . . . 12
|
99 | 84, 85, 98 | syl2anc 409 |
. . . . . . . . . . 11
|
100 | 97, 99 | eqtrd 2198 |
. . . . . . . . . 10
|
101 | 100 | fveq1d 5488 |
. . . . . . . . 9
|
102 | | 2ndexg 6136 |
. . . . . . . . . . 11
|
103 | 91, 102 | ax-mp 5 |
. . . . . . . . . 10
|
104 | 24 | fvmpt2 5569 |
. . . . . . . . . 10
|
105 | 103, 104 | mpan2 422 |
. . . . . . . . 9
|
106 | 101, 105 | sylan9eq 2219 |
. . . . . . . 8
|
107 | 96, 106 | opeq12d 3766 |
. . . . . . 7
|
108 | 80 | ffvelrnda 5620 |
. . . . . . . 8
|
109 | | 1st2nd2 6143 |
. . . . . . . 8
|
110 | 108, 109 | syl 14 |
. . . . . . 7
|
111 | 107, 110 | eqtr4d 2201 |
. . . . . 6
|
112 | 111 | mpteq2dva 4072 |
. . . . 5
|
113 | 40, 112 | syl5eq 2211 |
. . . 4
|
114 | 81, 113 | eqtr4d 2201 |
. . 3
|
115 | 78, 114 | impbida 586 |
. 2
|
116 | 7, 12, 29, 43, 115 | en3i 6737 |
1
|