| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xaddass | Unicode version | ||
| Description: Associativity of extended
real addition.  The correct condition here is
     "it is not the case that both  | 
| Ref | Expression | 
|---|---|
| xaddass | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recn 8012 | 
. . . . . . . . . 10
 | |
| 2 | recn 8012 | 
. . . . . . . . . 10
 | |
| 3 | recn 8012 | 
. . . . . . . . . 10
 | |
| 4 | addass 8009 | 
. . . . . . . . . 10
 | |
| 5 | 1, 2, 3, 4 | syl3an 1291 | 
. . . . . . . . 9
 | 
| 6 | 5 | 3expa 1205 | 
. . . . . . . 8
 | 
| 7 | readdcl 8005 | 
. . . . . . . . 9
 | |
| 8 | rexadd 9927 | 
. . . . . . . . 9
 | |
| 9 | 7, 8 | sylan 283 | 
. . . . . . . 8
 | 
| 10 | readdcl 8005 | 
. . . . . . . . . 10
 | |
| 11 | rexadd 9927 | 
. . . . . . . . . 10
 | |
| 12 | 10, 11 | sylan2 286 | 
. . . . . . . . 9
 | 
| 13 | 12 | anassrs 400 | 
. . . . . . . 8
 | 
| 14 | 6, 9, 13 | 3eqtr4d 2239 | 
. . . . . . 7
 | 
| 15 | rexadd 9927 | 
. . . . . . . . 9
 | |
| 16 | 15 | adantr 276 | 
. . . . . . . 8
 | 
| 17 | 16 | oveq1d 5937 | 
. . . . . . 7
 | 
| 18 | rexadd 9927 | 
. . . . . . . . 9
 | |
| 19 | 18 | adantll 476 | 
. . . . . . . 8
 | 
| 20 | 19 | oveq2d 5938 | 
. . . . . . 7
 | 
| 21 | 14, 17, 20 | 3eqtr4d 2239 | 
. . . . . 6
 | 
| 22 | 21 | adantll 476 | 
. . . . 5
 | 
| 23 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 24 | simp1l 1023 | 
. . . . . . . . . . 11
 | |
| 25 | simp2l 1025 | 
. . . . . . . . . . 11
 | |
| 26 | xaddcl 9935 | 
. . . . . . . . . . 11
 | |
| 27 | 24, 25, 26 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 28 | xaddnemnf 9932 | 
. . . . . . . . . . 11
 | |
| 29 | 28 | 3adant3 1019 | 
. . . . . . . . . 10
 | 
| 30 | xaddpnf1 9921 | 
. . . . . . . . . 10
 | |
| 31 | 27, 29, 30 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 32 | 23, 31 | sylan9eqr 2251 | 
. . . . . . . 8
 | 
| 33 | xaddpnf1 9921 | 
. . . . . . . . . 10
 | |
| 34 | 33 | 3ad2ant1 1020 | 
. . . . . . . . 9
 | 
| 35 | 34 | adantr 276 | 
. . . . . . . 8
 | 
| 36 | 32, 35 | eqtr4d 2232 | 
. . . . . . 7
 | 
| 37 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 38 | xaddpnf1 9921 | 
. . . . . . . . . 10
 | |
| 39 | 38 | 3ad2ant2 1021 | 
. . . . . . . . 9
 | 
| 40 | 37, 39 | sylan9eqr 2251 | 
. . . . . . . 8
 | 
| 41 | 40 | oveq2d 5938 | 
. . . . . . 7
 | 
| 42 | 36, 41 | eqtr4d 2232 | 
. . . . . 6
 | 
| 43 | 42 | adantlr 477 | 
. . . . 5
 | 
| 44 | simp3 1001 | 
. . . . . . 7
 | |
| 45 | xrnemnf 9852 | 
. . . . . . 7
 | |
| 46 | 44, 45 | sylib 122 | 
. . . . . 6
 | 
| 47 | 46 | adantr 276 | 
. . . . 5
 | 
| 48 | 22, 43, 47 | mpjaodan 799 | 
. . . 4
 | 
| 49 | 48 | anassrs 400 | 
. . 3
 | 
| 50 | xaddpnf2 9922 | 
. . . . . . . 8
 | |
| 51 | 50 | 3ad2ant3 1022 | 
. . . . . . 7
 | 
| 52 | 51, 34 | eqtr4d 2232 | 
. . . . . 6
 | 
| 53 | 52 | adantr 276 | 
. . . . 5
 | 
| 54 | oveq2 5930 | 
. . . . . . 7
 | |
| 55 | 54, 34 | sylan9eqr 2251 | 
. . . . . 6
 | 
| 56 | 55 | oveq1d 5937 | 
. . . . 5
 | 
| 57 | oveq1 5929 | 
. . . . . . 7
 | |
| 58 | 57, 51 | sylan9eqr 2251 | 
. . . . . 6
 | 
| 59 | 58 | oveq2d 5938 | 
. . . . 5
 | 
| 60 | 53, 56, 59 | 3eqtr4d 2239 | 
. . . 4
 | 
| 61 | 60 | adantlr 477 | 
. . 3
 | 
| 62 | simpl2 1003 | 
. . . 4
 | |
| 63 | xrnemnf 9852 | 
. . . 4
 | |
| 64 | 62, 63 | sylib 122 | 
. . 3
 | 
| 65 | 49, 61, 64 | mpjaodan 799 | 
. 2
 | 
| 66 | simpl3 1004 | 
. . . . 5
 | |
| 67 | 66, 50 | syl 14 | 
. . . 4
 | 
| 68 | simpl2l 1052 | 
. . . . . 6
 | |
| 69 | simpl3l 1054 | 
. . . . . 6
 | |
| 70 | xaddcl 9935 | 
. . . . . 6
 | |
| 71 | 68, 69, 70 | syl2anc 411 | 
. . . . 5
 | 
| 72 | simpl2 1003 | 
. . . . . 6
 | |
| 73 | xaddnemnf 9932 | 
. . . . . 6
 | |
| 74 | 72, 66, 73 | syl2anc 411 | 
. . . . 5
 | 
| 75 | xaddpnf2 9922 | 
. . . . 5
 | |
| 76 | 71, 74, 75 | syl2anc 411 | 
. . . 4
 | 
| 77 | 67, 76 | eqtr4d 2232 | 
. . 3
 | 
| 78 | simpr 110 | 
. . . . . 6
 | |
| 79 | 78 | oveq1d 5937 | 
. . . . 5
 | 
| 80 | xaddpnf2 9922 | 
. . . . . 6
 | |
| 81 | 72, 80 | syl 14 | 
. . . . 5
 | 
| 82 | 79, 81 | eqtrd 2229 | 
. . . 4
 | 
| 83 | 82 | oveq1d 5937 | 
. . 3
 | 
| 84 | 78 | oveq1d 5937 | 
. . 3
 | 
| 85 | 77, 83, 84 | 3eqtr4d 2239 | 
. 2
 | 
| 86 | simp1 999 | 
. . 3
 | |
| 87 | xrnemnf 9852 | 
. . 3
 | |
| 88 | 86, 87 | sylib 122 | 
. 2
 | 
| 89 | 65, 85, 88 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-addass 7981 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-xadd 9848 | 
| This theorem is referenced by: xaddass2 9945 xpncan 9946 xadd4d 9960 | 
| Copyright terms: Public domain | W3C validator |