Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddass | Unicode version |
Description: Associativity of extended real addition. The correct condition here is "it is not the case that both and appear as one of , i.e. ", but this condition is difficult to work with, so we break the theorem into two parts: this one, where is not present in , and xaddass2 9827, where is not present. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7907 | . . . . . . . . . 10 | |
2 | recn 7907 | . . . . . . . . . 10 | |
3 | recn 7907 | . . . . . . . . . 10 | |
4 | addass 7904 | . . . . . . . . . 10 | |
5 | 1, 2, 3, 4 | syl3an 1275 | . . . . . . . . 9 |
6 | 5 | 3expa 1198 | . . . . . . . 8 |
7 | readdcl 7900 | . . . . . . . . 9 | |
8 | rexadd 9809 | . . . . . . . . 9 | |
9 | 7, 8 | sylan 281 | . . . . . . . 8 |
10 | readdcl 7900 | . . . . . . . . . 10 | |
11 | rexadd 9809 | . . . . . . . . . 10 | |
12 | 10, 11 | sylan2 284 | . . . . . . . . 9 |
13 | 12 | anassrs 398 | . . . . . . . 8 |
14 | 6, 9, 13 | 3eqtr4d 2213 | . . . . . . 7 |
15 | rexadd 9809 | . . . . . . . . 9 | |
16 | 15 | adantr 274 | . . . . . . . 8 |
17 | 16 | oveq1d 5868 | . . . . . . 7 |
18 | rexadd 9809 | . . . . . . . . 9 | |
19 | 18 | adantll 473 | . . . . . . . 8 |
20 | 19 | oveq2d 5869 | . . . . . . 7 |
21 | 14, 17, 20 | 3eqtr4d 2213 | . . . . . 6 |
22 | 21 | adantll 473 | . . . . 5 |
23 | oveq2 5861 | . . . . . . . . 9 | |
24 | simp1l 1016 | . . . . . . . . . . 11 | |
25 | simp2l 1018 | . . . . . . . . . . 11 | |
26 | xaddcl 9817 | . . . . . . . . . . 11 | |
27 | 24, 25, 26 | syl2anc 409 | . . . . . . . . . 10 |
28 | xaddnemnf 9814 | . . . . . . . . . . 11 | |
29 | 28 | 3adant3 1012 | . . . . . . . . . 10 |
30 | xaddpnf1 9803 | . . . . . . . . . 10 | |
31 | 27, 29, 30 | syl2anc 409 | . . . . . . . . 9 |
32 | 23, 31 | sylan9eqr 2225 | . . . . . . . 8 |
33 | xaddpnf1 9803 | . . . . . . . . . 10 | |
34 | 33 | 3ad2ant1 1013 | . . . . . . . . 9 |
35 | 34 | adantr 274 | . . . . . . . 8 |
36 | 32, 35 | eqtr4d 2206 | . . . . . . 7 |
37 | oveq2 5861 | . . . . . . . . 9 | |
38 | xaddpnf1 9803 | . . . . . . . . . 10 | |
39 | 38 | 3ad2ant2 1014 | . . . . . . . . 9 |
40 | 37, 39 | sylan9eqr 2225 | . . . . . . . 8 |
41 | 40 | oveq2d 5869 | . . . . . . 7 |
42 | 36, 41 | eqtr4d 2206 | . . . . . 6 |
43 | 42 | adantlr 474 | . . . . 5 |
44 | simp3 994 | . . . . . . 7 | |
45 | xrnemnf 9734 | . . . . . . 7 | |
46 | 44, 45 | sylib 121 | . . . . . 6 |
47 | 46 | adantr 274 | . . . . 5 |
48 | 22, 43, 47 | mpjaodan 793 | . . . 4 |
49 | 48 | anassrs 398 | . . 3 |
50 | xaddpnf2 9804 | . . . . . . . 8 | |
51 | 50 | 3ad2ant3 1015 | . . . . . . 7 |
52 | 51, 34 | eqtr4d 2206 | . . . . . 6 |
53 | 52 | adantr 274 | . . . . 5 |
54 | oveq2 5861 | . . . . . . 7 | |
55 | 54, 34 | sylan9eqr 2225 | . . . . . 6 |
56 | 55 | oveq1d 5868 | . . . . 5 |
57 | oveq1 5860 | . . . . . . 7 | |
58 | 57, 51 | sylan9eqr 2225 | . . . . . 6 |
59 | 58 | oveq2d 5869 | . . . . 5 |
60 | 53, 56, 59 | 3eqtr4d 2213 | . . . 4 |
61 | 60 | adantlr 474 | . . 3 |
62 | simpl2 996 | . . . 4 | |
63 | xrnemnf 9734 | . . . 4 | |
64 | 62, 63 | sylib 121 | . . 3 |
65 | 49, 61, 64 | mpjaodan 793 | . 2 |
66 | simpl3 997 | . . . . 5 | |
67 | 66, 50 | syl 14 | . . . 4 |
68 | simpl2l 1045 | . . . . . 6 | |
69 | simpl3l 1047 | . . . . . 6 | |
70 | xaddcl 9817 | . . . . . 6 | |
71 | 68, 69, 70 | syl2anc 409 | . . . . 5 |
72 | simpl2 996 | . . . . . 6 | |
73 | xaddnemnf 9814 | . . . . . 6 | |
74 | 72, 66, 73 | syl2anc 409 | . . . . 5 |
75 | xaddpnf2 9804 | . . . . 5 | |
76 | 71, 74, 75 | syl2anc 409 | . . . 4 |
77 | 67, 76 | eqtr4d 2206 | . . 3 |
78 | simpr 109 | . . . . . 6 | |
79 | 78 | oveq1d 5868 | . . . . 5 |
80 | xaddpnf2 9804 | . . . . . 6 | |
81 | 72, 80 | syl 14 | . . . . 5 |
82 | 79, 81 | eqtrd 2203 | . . . 4 |
83 | 82 | oveq1d 5868 | . . 3 |
84 | 78 | oveq1d 5868 | . . 3 |
85 | 77, 83, 84 | 3eqtr4d 2213 | . 2 |
86 | simp1 992 | . . 3 | |
87 | xrnemnf 9734 | . . 3 | |
88 | 86, 87 | sylib 121 | . 2 |
89 | 65, 85, 88 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 w3a 973 wceq 1348 wcel 2141 wne 2340 (class class class)co 5853 cc 7772 cr 7773 caddc 7777 cpnf 7951 cmnf 7952 cxr 7953 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-addass 7876 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-xadd 9730 |
This theorem is referenced by: xaddass2 9827 xpncan 9828 xadd4d 9842 |
Copyright terms: Public domain | W3C validator |