| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddass | Unicode version | ||
| Description: Associativity of extended
real addition. The correct condition here is
"it is not the case that both |
| Ref | Expression |
|---|---|
| xaddass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8132 |
. . . . . . . . . 10
| |
| 2 | recn 8132 |
. . . . . . . . . 10
| |
| 3 | recn 8132 |
. . . . . . . . . 10
| |
| 4 | addass 8129 |
. . . . . . . . . 10
| |
| 5 | 1, 2, 3, 4 | syl3an 1313 |
. . . . . . . . 9
|
| 6 | 5 | 3expa 1227 |
. . . . . . . 8
|
| 7 | readdcl 8125 |
. . . . . . . . 9
| |
| 8 | rexadd 10048 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylan 283 |
. . . . . . . 8
|
| 10 | readdcl 8125 |
. . . . . . . . . 10
| |
| 11 | rexadd 10048 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | sylan2 286 |
. . . . . . . . 9
|
| 13 | 12 | anassrs 400 |
. . . . . . . 8
|
| 14 | 6, 9, 13 | 3eqtr4d 2272 |
. . . . . . 7
|
| 15 | rexadd 10048 |
. . . . . . . . 9
| |
| 16 | 15 | adantr 276 |
. . . . . . . 8
|
| 17 | 16 | oveq1d 6016 |
. . . . . . 7
|
| 18 | rexadd 10048 |
. . . . . . . . 9
| |
| 19 | 18 | adantll 476 |
. . . . . . . 8
|
| 20 | 19 | oveq2d 6017 |
. . . . . . 7
|
| 21 | 14, 17, 20 | 3eqtr4d 2272 |
. . . . . 6
|
| 22 | 21 | adantll 476 |
. . . . 5
|
| 23 | oveq2 6009 |
. . . . . . . . 9
| |
| 24 | simp1l 1045 |
. . . . . . . . . . 11
| |
| 25 | simp2l 1047 |
. . . . . . . . . . 11
| |
| 26 | xaddcl 10056 |
. . . . . . . . . . 11
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . . . . . 10
|
| 28 | xaddnemnf 10053 |
. . . . . . . . . . 11
| |
| 29 | 28 | 3adant3 1041 |
. . . . . . . . . 10
|
| 30 | xaddpnf1 10042 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | syl2anc 411 |
. . . . . . . . 9
|
| 32 | 23, 31 | sylan9eqr 2284 |
. . . . . . . 8
|
| 33 | xaddpnf1 10042 |
. . . . . . . . . 10
| |
| 34 | 33 | 3ad2ant1 1042 |
. . . . . . . . 9
|
| 35 | 34 | adantr 276 |
. . . . . . . 8
|
| 36 | 32, 35 | eqtr4d 2265 |
. . . . . . 7
|
| 37 | oveq2 6009 |
. . . . . . . . 9
| |
| 38 | xaddpnf1 10042 |
. . . . . . . . . 10
| |
| 39 | 38 | 3ad2ant2 1043 |
. . . . . . . . 9
|
| 40 | 37, 39 | sylan9eqr 2284 |
. . . . . . . 8
|
| 41 | 40 | oveq2d 6017 |
. . . . . . 7
|
| 42 | 36, 41 | eqtr4d 2265 |
. . . . . 6
|
| 43 | 42 | adantlr 477 |
. . . . 5
|
| 44 | simp3 1023 |
. . . . . . 7
| |
| 45 | xrnemnf 9973 |
. . . . . . 7
| |
| 46 | 44, 45 | sylib 122 |
. . . . . 6
|
| 47 | 46 | adantr 276 |
. . . . 5
|
| 48 | 22, 43, 47 | mpjaodan 803 |
. . . 4
|
| 49 | 48 | anassrs 400 |
. . 3
|
| 50 | xaddpnf2 10043 |
. . . . . . . 8
| |
| 51 | 50 | 3ad2ant3 1044 |
. . . . . . 7
|
| 52 | 51, 34 | eqtr4d 2265 |
. . . . . 6
|
| 53 | 52 | adantr 276 |
. . . . 5
|
| 54 | oveq2 6009 |
. . . . . . 7
| |
| 55 | 54, 34 | sylan9eqr 2284 |
. . . . . 6
|
| 56 | 55 | oveq1d 6016 |
. . . . 5
|
| 57 | oveq1 6008 |
. . . . . . 7
| |
| 58 | 57, 51 | sylan9eqr 2284 |
. . . . . 6
|
| 59 | 58 | oveq2d 6017 |
. . . . 5
|
| 60 | 53, 56, 59 | 3eqtr4d 2272 |
. . . 4
|
| 61 | 60 | adantlr 477 |
. . 3
|
| 62 | simpl2 1025 |
. . . 4
| |
| 63 | xrnemnf 9973 |
. . . 4
| |
| 64 | 62, 63 | sylib 122 |
. . 3
|
| 65 | 49, 61, 64 | mpjaodan 803 |
. 2
|
| 66 | simpl3 1026 |
. . . . 5
| |
| 67 | 66, 50 | syl 14 |
. . . 4
|
| 68 | simpl2l 1074 |
. . . . . 6
| |
| 69 | simpl3l 1076 |
. . . . . 6
| |
| 70 | xaddcl 10056 |
. . . . . 6
| |
| 71 | 68, 69, 70 | syl2anc 411 |
. . . . 5
|
| 72 | simpl2 1025 |
. . . . . 6
| |
| 73 | xaddnemnf 10053 |
. . . . . 6
| |
| 74 | 72, 66, 73 | syl2anc 411 |
. . . . 5
|
| 75 | xaddpnf2 10043 |
. . . . 5
| |
| 76 | 71, 74, 75 | syl2anc 411 |
. . . 4
|
| 77 | 67, 76 | eqtr4d 2265 |
. . 3
|
| 78 | simpr 110 |
. . . . . 6
| |
| 79 | 78 | oveq1d 6016 |
. . . . 5
|
| 80 | xaddpnf2 10043 |
. . . . . 6
| |
| 81 | 72, 80 | syl 14 |
. . . . 5
|
| 82 | 79, 81 | eqtrd 2262 |
. . . 4
|
| 83 | 82 | oveq1d 6016 |
. . 3
|
| 84 | 78 | oveq1d 6016 |
. . 3
|
| 85 | 77, 83, 84 | 3eqtr4d 2272 |
. 2
|
| 86 | simp1 1021 |
. . 3
| |
| 87 | xrnemnf 9973 |
. . 3
| |
| 88 | 86, 87 | sylib 122 |
. 2
|
| 89 | 65, 85, 88 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-addass 8101 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-xadd 9969 |
| This theorem is referenced by: xaddass2 10066 xpncan 10067 xadd4d 10081 |
| Copyright terms: Public domain | W3C validator |