Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddass | Unicode version |
Description: Associativity of extended real addition. The correct condition here is "it is not the case that both and appear as one of , i.e. ", but this condition is difficult to work with, so we break the theorem into two parts: this one, where is not present in , and xaddass2 9806, where is not present. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7886 | . . . . . . . . . 10 | |
2 | recn 7886 | . . . . . . . . . 10 | |
3 | recn 7886 | . . . . . . . . . 10 | |
4 | addass 7883 | . . . . . . . . . 10 | |
5 | 1, 2, 3, 4 | syl3an 1270 | . . . . . . . . 9 |
6 | 5 | 3expa 1193 | . . . . . . . 8 |
7 | readdcl 7879 | . . . . . . . . 9 | |
8 | rexadd 9788 | . . . . . . . . 9 | |
9 | 7, 8 | sylan 281 | . . . . . . . 8 |
10 | readdcl 7879 | . . . . . . . . . 10 | |
11 | rexadd 9788 | . . . . . . . . . 10 | |
12 | 10, 11 | sylan2 284 | . . . . . . . . 9 |
13 | 12 | anassrs 398 | . . . . . . . 8 |
14 | 6, 9, 13 | 3eqtr4d 2208 | . . . . . . 7 |
15 | rexadd 9788 | . . . . . . . . 9 | |
16 | 15 | adantr 274 | . . . . . . . 8 |
17 | 16 | oveq1d 5857 | . . . . . . 7 |
18 | rexadd 9788 | . . . . . . . . 9 | |
19 | 18 | adantll 468 | . . . . . . . 8 |
20 | 19 | oveq2d 5858 | . . . . . . 7 |
21 | 14, 17, 20 | 3eqtr4d 2208 | . . . . . 6 |
22 | 21 | adantll 468 | . . . . 5 |
23 | oveq2 5850 | . . . . . . . . 9 | |
24 | simp1l 1011 | . . . . . . . . . . 11 | |
25 | simp2l 1013 | . . . . . . . . . . 11 | |
26 | xaddcl 9796 | . . . . . . . . . . 11 | |
27 | 24, 25, 26 | syl2anc 409 | . . . . . . . . . 10 |
28 | xaddnemnf 9793 | . . . . . . . . . . 11 | |
29 | 28 | 3adant3 1007 | . . . . . . . . . 10 |
30 | xaddpnf1 9782 | . . . . . . . . . 10 | |
31 | 27, 29, 30 | syl2anc 409 | . . . . . . . . 9 |
32 | 23, 31 | sylan9eqr 2221 | . . . . . . . 8 |
33 | xaddpnf1 9782 | . . . . . . . . . 10 | |
34 | 33 | 3ad2ant1 1008 | . . . . . . . . 9 |
35 | 34 | adantr 274 | . . . . . . . 8 |
36 | 32, 35 | eqtr4d 2201 | . . . . . . 7 |
37 | oveq2 5850 | . . . . . . . . 9 | |
38 | xaddpnf1 9782 | . . . . . . . . . 10 | |
39 | 38 | 3ad2ant2 1009 | . . . . . . . . 9 |
40 | 37, 39 | sylan9eqr 2221 | . . . . . . . 8 |
41 | 40 | oveq2d 5858 | . . . . . . 7 |
42 | 36, 41 | eqtr4d 2201 | . . . . . 6 |
43 | 42 | adantlr 469 | . . . . 5 |
44 | simp3 989 | . . . . . . 7 | |
45 | xrnemnf 9713 | . . . . . . 7 | |
46 | 44, 45 | sylib 121 | . . . . . 6 |
47 | 46 | adantr 274 | . . . . 5 |
48 | 22, 43, 47 | mpjaodan 788 | . . . 4 |
49 | 48 | anassrs 398 | . . 3 |
50 | xaddpnf2 9783 | . . . . . . . 8 | |
51 | 50 | 3ad2ant3 1010 | . . . . . . 7 |
52 | 51, 34 | eqtr4d 2201 | . . . . . 6 |
53 | 52 | adantr 274 | . . . . 5 |
54 | oveq2 5850 | . . . . . . 7 | |
55 | 54, 34 | sylan9eqr 2221 | . . . . . 6 |
56 | 55 | oveq1d 5857 | . . . . 5 |
57 | oveq1 5849 | . . . . . . 7 | |
58 | 57, 51 | sylan9eqr 2221 | . . . . . 6 |
59 | 58 | oveq2d 5858 | . . . . 5 |
60 | 53, 56, 59 | 3eqtr4d 2208 | . . . 4 |
61 | 60 | adantlr 469 | . . 3 |
62 | simpl2 991 | . . . 4 | |
63 | xrnemnf 9713 | . . . 4 | |
64 | 62, 63 | sylib 121 | . . 3 |
65 | 49, 61, 64 | mpjaodan 788 | . 2 |
66 | simpl3 992 | . . . . 5 | |
67 | 66, 50 | syl 14 | . . . 4 |
68 | simpl2l 1040 | . . . . . 6 | |
69 | simpl3l 1042 | . . . . . 6 | |
70 | xaddcl 9796 | . . . . . 6 | |
71 | 68, 69, 70 | syl2anc 409 | . . . . 5 |
72 | simpl2 991 | . . . . . 6 | |
73 | xaddnemnf 9793 | . . . . . 6 | |
74 | 72, 66, 73 | syl2anc 409 | . . . . 5 |
75 | xaddpnf2 9783 | . . . . 5 | |
76 | 71, 74, 75 | syl2anc 409 | . . . 4 |
77 | 67, 76 | eqtr4d 2201 | . . 3 |
78 | simpr 109 | . . . . . 6 | |
79 | 78 | oveq1d 5857 | . . . . 5 |
80 | xaddpnf2 9783 | . . . . . 6 | |
81 | 72, 80 | syl 14 | . . . . 5 |
82 | 79, 81 | eqtrd 2198 | . . . 4 |
83 | 82 | oveq1d 5857 | . . 3 |
84 | 78 | oveq1d 5857 | . . 3 |
85 | 77, 83, 84 | 3eqtr4d 2208 | . 2 |
86 | simp1 987 | . . 3 | |
87 | xrnemnf 9713 | . . 3 | |
88 | 86, 87 | sylib 121 | . 2 |
89 | 65, 85, 88 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3a 968 wceq 1343 wcel 2136 wne 2336 (class class class)co 5842 cc 7751 cr 7752 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-addass 7855 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xadd 9709 |
This theorem is referenced by: xaddass2 9806 xpncan 9807 xadd4d 9821 |
Copyright terms: Public domain | W3C validator |