ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddass Unicode version

Theorem xaddass 9856
Description: Associativity of extended real addition. The correct condition here is "it is not the case that both +oo and -oo appear as one of  A ,  B ,  C, i.e.  -.  { +oo , -oo }  C_  { A ,  B ,  C }", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -oo is not present in  A ,  B ,  C, and xaddass2 9857, where +oo is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddass  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )

Proof of Theorem xaddass
StepHypRef Expression
1 recn 7935 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
2 recn 7935 . . . . . . . . . 10  |-  ( B  e.  RR  ->  B  e.  CC )
3 recn 7935 . . . . . . . . . 10  |-  ( C  e.  RR  ->  C  e.  CC )
4 addass 7932 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
51, 2, 3, 4syl3an 1280 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
653expa 1203 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
7 readdcl 7928 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
8 rexadd 9839 . . . . . . . . 9  |-  ( ( ( A  +  B
)  e.  RR  /\  C  e.  RR )  ->  ( ( A  +  B ) +e
C )  =  ( ( A  +  B
)  +  C ) )
97, 8sylan 283 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  +  B ) +e C )  =  ( ( A  +  B )  +  C
) )
10 readdcl 7928 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
11 rexadd 9839 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( A +e ( B  +  C ) )  =  ( A  +  ( B  +  C ) ) )
1210, 11sylan2 286 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( A +e ( B  +  C ) )  =  ( A  +  ( B  +  C
) ) )
1312anassrs 400 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A +e ( B  +  C ) )  =  ( A  +  ( B  +  C ) ) )
146, 9, 133eqtr4d 2220 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A  +  B ) +e C )  =  ( A +e
( B  +  C
) ) )
15 rexadd 9839 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
1615adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A +e B )  =  ( A  +  B
) )
1716oveq1d 5884 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A +e B ) +e C )  =  ( ( A  +  B ) +e C ) )
18 rexadd 9839 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B +e
C )  =  ( B  +  C ) )
1918adantll 476 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( B +e C )  =  ( B  +  C
) )
2019oveq2d 5885 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A +e ( B +e C ) )  =  ( A +e ( B  +  C ) ) )
2114, 17, 203eqtr4d 2220 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
2221adantll 476 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  C  e.  RR )  ->  (
( A +e
B ) +e
C )  =  ( A +e ( B +e C ) ) )
23 oveq2 5877 . . . . . . . . 9  |-  ( C  = +oo  ->  (
( A +e
B ) +e
C )  =  ( ( A +e
B ) +e +oo ) )
24 simp1l 1021 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  A  e.  RR* )
25 simp2l 1023 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  B  e.  RR* )
26 xaddcl 9847 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
2724, 25, 26syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A +e B )  e.  RR* )
28 xaddnemnf 9844 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )
)  ->  ( A +e B )  =/= -oo )
29283adant3 1017 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A +e B )  =/= -oo )
30 xaddpnf1 9833 . . . . . . . . . 10  |-  ( ( ( A +e
B )  e.  RR*  /\  ( A +e
B )  =/= -oo )  ->  ( ( A +e B ) +e +oo )  = +oo )
3127, 29, 30syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( ( A +e B ) +e +oo )  = +oo )
3223, 31sylan9eqr 2232 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( ( A +e B ) +e C )  = +oo )
33 xaddpnf1 9833 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
34333ad2ant1 1018 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A +e +oo )  = +oo )
3534adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( A +e +oo )  = +oo )
3632, 35eqtr4d 2213 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e +oo ) )
37 oveq2 5877 . . . . . . . . 9  |-  ( C  = +oo  ->  ( B +e C )  =  ( B +e +oo ) )
38 xaddpnf1 9833 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( B +e +oo )  = +oo )
39383ad2ant2 1019 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( B +e +oo )  = +oo )
4037, 39sylan9eqr 2232 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( B +e
C )  = +oo )
4140oveq2d 5885 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( A +e
( B +e
C ) )  =  ( A +e +oo ) )
4236, 41eqtr4d 2213 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  C  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) )
4342adantlr 477 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  C  = +oo )  ->  (
( A +e
B ) +e
C )  =  ( A +e ( B +e C ) ) )
44 simp3 999 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( C  e.  RR*  /\  C  =/= -oo ) )
45 xrnemnf 9764 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  <->  ( C  e.  RR  \/  C  = +oo ) )
4644, 45sylib 122 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( C  e.  RR  \/  C  = +oo ) )
4746adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  ( C  e.  RR  \/  C  = +oo ) )
4822, 43, 47mpjaodan 798 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  ( A  e.  RR  /\  B  e.  RR ) )  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
4948anassrs 400 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  /\  B  e.  RR )  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
50 xaddpnf2 9834 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
51503ad2ant3 1020 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( +oo +e C )  = +oo )
5251, 34eqtr4d 2213 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( +oo +e C )  =  ( A +e +oo ) )
5352adantr 276 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( +oo +e
C )  =  ( A +e +oo ) )
54 oveq2 5877 . . . . . . 7  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
5554, 34sylan9eqr 2232 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
5655oveq1d 5884 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( ( A +e B ) +e C )  =  ( +oo +e
C ) )
57 oveq1 5876 . . . . . . 7  |-  ( B  = +oo  ->  ( B +e C )  =  ( +oo +e C ) )
5857, 51sylan9eqr 2232 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( B +e
C )  = +oo )
5958oveq2d 5885 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( A +e
( B +e
C ) )  =  ( A +e +oo ) )
6053, 56, 593eqtr4d 2220 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  B  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) )
6160adantlr 477 . . 3  |-  ( ( ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  /\  B  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
62 simpl2 1001 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
63 xrnemnf 9764 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
6462, 63sylib 122 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  ->  ( B  e.  RR  \/  B  = +oo ) )
6549, 61, 64mpjaodan 798 . 2  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  e.  RR )  ->  ( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) )
66 simpl3 1002 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( C  e.  RR*  /\  C  =/= -oo )
)
6766, 50syl 14 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( +oo +e
C )  = +oo )
68 simpl2l 1050 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  B  e.  RR* )
69 simpl3l 1052 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  C  e.  RR* )
70 xaddcl 9847 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
7168, 69, 70syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( B +e
C )  e.  RR* )
72 simpl2 1001 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( B  e.  RR*  /\  B  =/= -oo )
)
73 xaddnemnf 9844 . . . . . 6  |-  ( ( ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( B +e C )  =/= -oo )
7472, 66, 73syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( B +e
C )  =/= -oo )
75 xaddpnf2 9834 . . . . 5  |-  ( ( ( B +e
C )  e.  RR*  /\  ( B +e
C )  =/= -oo )  ->  ( +oo +e ( B +e C ) )  = +oo )
7671, 74, 75syl2anc 411 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( +oo +e
( B +e
C ) )  = +oo )
7767, 76eqtr4d 2213 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( +oo +e
C )  =  ( +oo +e ( B +e C ) ) )
78 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  A  = +oo )
7978oveq1d 5884 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( A +e
B )  =  ( +oo +e B ) )
80 xaddpnf2 9834 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
8172, 80syl 14 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( +oo +e
B )  = +oo )
8279, 81eqtrd 2210 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( A +e
B )  = +oo )
8382oveq1d 5884 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( ( A +e B ) +e C )  =  ( +oo +e
C ) )
8478oveq1d 5884 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( A +e
( B +e
C ) )  =  ( +oo +e
( B +e
C ) ) )
8577, 83, 843eqtr4d 2220 . 2  |-  ( ( ( ( A  e. 
RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  /\  A  = +oo )  ->  ( ( A +e B ) +e C )  =  ( A +e
( B +e
C ) ) )
86 simp1 997 . . 3  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A  e.  RR*  /\  A  =/= -oo ) )
87 xrnemnf 9764 . . 3  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
8886, 87sylib 122 . 2  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( A  e.  RR  \/  A  = +oo ) )
8965, 85, 88mpjaodan 798 1  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo )
)  ->  ( ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347  (class class class)co 5869   CCcc 7800   RRcr 7801    + caddc 7805   +oocpnf 7979   -oocmnf 7980   RR*cxr 7981   +ecxad 9757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1re 7896  ax-addrcl 7899  ax-addass 7904  ax-rnegex 7911
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-xadd 9760
This theorem is referenced by:  xaddass2  9857  xpncan  9858  xadd4d  9872
  Copyright terms: Public domain W3C validator