| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddass | Unicode version | ||
| Description: Associativity of extended
real addition. The correct condition here is
"it is not the case that both |
| Ref | Expression |
|---|---|
| xaddass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8093 |
. . . . . . . . . 10
| |
| 2 | recn 8093 |
. . . . . . . . . 10
| |
| 3 | recn 8093 |
. . . . . . . . . 10
| |
| 4 | addass 8090 |
. . . . . . . . . 10
| |
| 5 | 1, 2, 3, 4 | syl3an 1292 |
. . . . . . . . 9
|
| 6 | 5 | 3expa 1206 |
. . . . . . . 8
|
| 7 | readdcl 8086 |
. . . . . . . . 9
| |
| 8 | rexadd 10009 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylan 283 |
. . . . . . . 8
|
| 10 | readdcl 8086 |
. . . . . . . . . 10
| |
| 11 | rexadd 10009 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | sylan2 286 |
. . . . . . . . 9
|
| 13 | 12 | anassrs 400 |
. . . . . . . 8
|
| 14 | 6, 9, 13 | 3eqtr4d 2250 |
. . . . . . 7
|
| 15 | rexadd 10009 |
. . . . . . . . 9
| |
| 16 | 15 | adantr 276 |
. . . . . . . 8
|
| 17 | 16 | oveq1d 5982 |
. . . . . . 7
|
| 18 | rexadd 10009 |
. . . . . . . . 9
| |
| 19 | 18 | adantll 476 |
. . . . . . . 8
|
| 20 | 19 | oveq2d 5983 |
. . . . . . 7
|
| 21 | 14, 17, 20 | 3eqtr4d 2250 |
. . . . . 6
|
| 22 | 21 | adantll 476 |
. . . . 5
|
| 23 | oveq2 5975 |
. . . . . . . . 9
| |
| 24 | simp1l 1024 |
. . . . . . . . . . 11
| |
| 25 | simp2l 1026 |
. . . . . . . . . . 11
| |
| 26 | xaddcl 10017 |
. . . . . . . . . . 11
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . . . . . 10
|
| 28 | xaddnemnf 10014 |
. . . . . . . . . . 11
| |
| 29 | 28 | 3adant3 1020 |
. . . . . . . . . 10
|
| 30 | xaddpnf1 10003 |
. . . . . . . . . 10
| |
| 31 | 27, 29, 30 | syl2anc 411 |
. . . . . . . . 9
|
| 32 | 23, 31 | sylan9eqr 2262 |
. . . . . . . 8
|
| 33 | xaddpnf1 10003 |
. . . . . . . . . 10
| |
| 34 | 33 | 3ad2ant1 1021 |
. . . . . . . . 9
|
| 35 | 34 | adantr 276 |
. . . . . . . 8
|
| 36 | 32, 35 | eqtr4d 2243 |
. . . . . . 7
|
| 37 | oveq2 5975 |
. . . . . . . . 9
| |
| 38 | xaddpnf1 10003 |
. . . . . . . . . 10
| |
| 39 | 38 | 3ad2ant2 1022 |
. . . . . . . . 9
|
| 40 | 37, 39 | sylan9eqr 2262 |
. . . . . . . 8
|
| 41 | 40 | oveq2d 5983 |
. . . . . . 7
|
| 42 | 36, 41 | eqtr4d 2243 |
. . . . . 6
|
| 43 | 42 | adantlr 477 |
. . . . 5
|
| 44 | simp3 1002 |
. . . . . . 7
| |
| 45 | xrnemnf 9934 |
. . . . . . 7
| |
| 46 | 44, 45 | sylib 122 |
. . . . . 6
|
| 47 | 46 | adantr 276 |
. . . . 5
|
| 48 | 22, 43, 47 | mpjaodan 800 |
. . . 4
|
| 49 | 48 | anassrs 400 |
. . 3
|
| 50 | xaddpnf2 10004 |
. . . . . . . 8
| |
| 51 | 50 | 3ad2ant3 1023 |
. . . . . . 7
|
| 52 | 51, 34 | eqtr4d 2243 |
. . . . . 6
|
| 53 | 52 | adantr 276 |
. . . . 5
|
| 54 | oveq2 5975 |
. . . . . . 7
| |
| 55 | 54, 34 | sylan9eqr 2262 |
. . . . . 6
|
| 56 | 55 | oveq1d 5982 |
. . . . 5
|
| 57 | oveq1 5974 |
. . . . . . 7
| |
| 58 | 57, 51 | sylan9eqr 2262 |
. . . . . 6
|
| 59 | 58 | oveq2d 5983 |
. . . . 5
|
| 60 | 53, 56, 59 | 3eqtr4d 2250 |
. . . 4
|
| 61 | 60 | adantlr 477 |
. . 3
|
| 62 | simpl2 1004 |
. . . 4
| |
| 63 | xrnemnf 9934 |
. . . 4
| |
| 64 | 62, 63 | sylib 122 |
. . 3
|
| 65 | 49, 61, 64 | mpjaodan 800 |
. 2
|
| 66 | simpl3 1005 |
. . . . 5
| |
| 67 | 66, 50 | syl 14 |
. . . 4
|
| 68 | simpl2l 1053 |
. . . . . 6
| |
| 69 | simpl3l 1055 |
. . . . . 6
| |
| 70 | xaddcl 10017 |
. . . . . 6
| |
| 71 | 68, 69, 70 | syl2anc 411 |
. . . . 5
|
| 72 | simpl2 1004 |
. . . . . 6
| |
| 73 | xaddnemnf 10014 |
. . . . . 6
| |
| 74 | 72, 66, 73 | syl2anc 411 |
. . . . 5
|
| 75 | xaddpnf2 10004 |
. . . . 5
| |
| 76 | 71, 74, 75 | syl2anc 411 |
. . . 4
|
| 77 | 67, 76 | eqtr4d 2243 |
. . 3
|
| 78 | simpr 110 |
. . . . . 6
| |
| 79 | 78 | oveq1d 5982 |
. . . . 5
|
| 80 | xaddpnf2 10004 |
. . . . . 6
| |
| 81 | 72, 80 | syl 14 |
. . . . 5
|
| 82 | 79, 81 | eqtrd 2240 |
. . . 4
|
| 83 | 82 | oveq1d 5982 |
. . 3
|
| 84 | 78 | oveq1d 5982 |
. . 3
|
| 85 | 77, 83, 84 | 3eqtr4d 2250 |
. 2
|
| 86 | simp1 1000 |
. . 3
| |
| 87 | xrnemnf 9934 |
. . 3
| |
| 88 | 86, 87 | sylib 122 |
. 2
|
| 89 | 65, 85, 88 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-addass 8062 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-xadd 9930 |
| This theorem is referenced by: xaddass2 10027 xpncan 10028 xadd4d 10042 |
| Copyright terms: Public domain | W3C validator |