| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leidd | Unicode version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 |
|
| Ref | Expression |
|---|---|
| leidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 |
. 2
| |
| 2 | leid 8155 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltirr 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 |
| This theorem is referenced by: zextle 9463 uzind 9483 uzid 9661 z2ge 9947 nn0fz0 10240 fvinim0ffz 10368 flid 10425 modqabs2 10501 monoord 10628 leexp2r 10736 facwordi 10883 faclbnd6 10887 sqrtgt0 11316 abs00ap 11344 isumlessdc 11778 cvgratnnlemnexp 11806 cvgratnnlemmn 11807 eirraplem 12059 nn0seqcvgd 12334 pcidlem 12617 pc2dvds 12624 pcprmpw2 12627 pcmpt 12637 trilpolemclim 15937 trilpolemisumle 15939 trilpolemeq1 15941 |
| Copyright terms: Public domain | W3C validator |