ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leidd Unicode version

Theorem leidd 8300
Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
leidd  |-  ( ph  ->  A  <_  A )

Proof of Theorem leidd
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 leid 7872 . 2  |-  ( A  e.  RR  ->  A  <_  A )
31, 2syl 14 1  |-  ( ph  ->  A  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1481   class class class wbr 3937   RRcr 7643    <_ cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-pre-ltirr 7756
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830
This theorem is referenced by:  zextle  9166  uzind  9186  uzid  9364  z2ge  9639  nn0fz0  9930  fvinim0ffz  10049  flid  10088  modqabs2  10162  monoord  10280  leexp2r  10378  facwordi  10518  faclbnd6  10522  sqrtgt0  10838  abs00ap  10866  isumlessdc  11297  cvgratnnlemnexp  11325  cvgratnnlemmn  11326  eirraplem  11519  nn0seqcvgd  11758  trilpolemclim  13404  trilpolemisumle  13406  trilpolemeq1  13408
  Copyright terms: Public domain W3C validator