Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > leidd | Unicode version |
Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 |
Ref | Expression |
---|---|
leidd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 | |
2 | leid 8015 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 class class class wbr 3998 cr 7785 cle 7967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltirr 7898 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 |
This theorem is referenced by: zextle 9317 uzind 9337 uzid 9515 z2ge 9797 nn0fz0 10089 fvinim0ffz 10211 flid 10254 modqabs2 10328 monoord 10446 leexp2r 10544 facwordi 10688 faclbnd6 10692 sqrtgt0 11011 abs00ap 11039 isumlessdc 11472 cvgratnnlemnexp 11500 cvgratnnlemmn 11501 eirraplem 11752 nn0seqcvgd 12008 pcidlem 12289 pc2dvds 12296 pcprmpw2 12299 pcmpt 12308 trilpolemclim 14354 trilpolemisumle 14356 trilpolemeq1 14358 |
Copyright terms: Public domain | W3C validator |