| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leidd | Unicode version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 |
|
| Ref | Expression |
|---|---|
| leidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 |
. 2
| |
| 2 | leid 8191 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: zextle 9499 uzind 9519 uzid 9697 z2ge 9983 nn0fz0 10276 fvinim0ffz 10407 flid 10464 modqabs2 10540 monoord 10667 leexp2r 10775 facwordi 10922 faclbnd6 10926 pfxsuffeqwrdeq 11189 sqrtgt0 11460 abs00ap 11488 isumlessdc 11922 cvgratnnlemnexp 11950 cvgratnnlemmn 11951 eirraplem 12203 nn0seqcvgd 12478 pcidlem 12761 pc2dvds 12768 pcprmpw2 12771 pcmpt 12781 trilpolemclim 16177 trilpolemisumle 16179 trilpolemeq1 16181 |
| Copyright terms: Public domain | W3C validator |