ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leidd Unicode version

Theorem leidd 8445
Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
leidd  |-  ( ph  ->  A  <_  A )

Proof of Theorem leidd
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 leid 8015 . 2  |-  ( A  e.  RR  ->  A  <_  A )
31, 2syl 14 1  |-  ( ph  ->  A  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   class class class wbr 3998   RRcr 7785    <_ cle 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltirr 7898
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972
This theorem is referenced by:  zextle  9317  uzind  9337  uzid  9515  z2ge  9797  nn0fz0  10089  fvinim0ffz  10211  flid  10254  modqabs2  10328  monoord  10446  leexp2r  10544  facwordi  10688  faclbnd6  10692  sqrtgt0  11011  abs00ap  11039  isumlessdc  11472  cvgratnnlemnexp  11500  cvgratnnlemmn  11501  eirraplem  11752  nn0seqcvgd  12008  pcidlem  12289  pc2dvds  12296  pcprmpw2  12299  pcmpt  12308  trilpolemclim  14354  trilpolemisumle  14356  trilpolemeq1  14358
  Copyright terms: Public domain W3C validator