ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  immul2 GIF version

Theorem immul2 10377
Description: Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
immul2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵)))

Proof of Theorem immul2
StepHypRef Expression
1 recn 7538 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 immul 10376 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
31, 2sylan 278 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
4 rere 10362 . . . . 5 (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴)
54adantr 271 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) = 𝐴)
65oveq1d 5683 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) = (𝐴 · (ℑ‘𝐵)))
7 reim0 10358 . . . . 5 (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
87oveq1d 5683 . . . 4 (𝐴 ∈ ℝ → ((ℑ‘𝐴) · (ℜ‘𝐵)) = (0 · (ℜ‘𝐵)))
9 recl 10350 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
109recnd 7579 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ)
1110mul02d 7933 . . . 4 (𝐵 ∈ ℂ → (0 · (ℜ‘𝐵)) = 0)
128, 11sylan9eq 2141 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) = 0)
136, 12oveq12d 5686 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) = ((𝐴 · (ℑ‘𝐵)) + 0))
14 imcl 10351 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1514recnd 7579 . . . 4 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
16 mulcl 7532 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (𝐴 · (ℑ‘𝐵)) ∈ ℂ)
171, 15, 16syl2an 284 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 · (ℑ‘𝐵)) ∈ ℂ)
1817addid1d 7694 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (ℑ‘𝐵)) + 0) = (𝐴 · (ℑ‘𝐵)))
193, 13, 183eqtrd 2125 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439  cfv 5030  (class class class)co 5668  cc 7411  cr 7412  0cc0 7413   + caddc 7416   · cmul 7418  cre 10337  cim 10338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-mulrcl 7507  ax-addcom 7508  ax-mulcom 7509  ax-addass 7510  ax-mulass 7511  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-1rid 7515  ax-0id 7516  ax-rnegex 7517  ax-precex 7518  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524  ax-pre-mulgt0 7525  ax-pre-mulext 7526
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-po 4134  df-iso 4135  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-reap 8115  df-ap 8122  df-div 8203  df-2 8544  df-cj 10339  df-re 10340  df-im 10341
This theorem is referenced by:  imdivap  10378  immul2d  10470
  Copyright terms: Public domain W3C validator