Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > immul2 | GIF version |
Description: Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
immul2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7907 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | immul 10843 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | |
3 | 1, 2 | sylan 281 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) |
4 | rere 10829 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴) | |
5 | 4 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) = 𝐴) |
6 | 5 | oveq1d 5868 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) = (𝐴 · (ℑ‘𝐵))) |
7 | reim0 10825 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | |
8 | 7 | oveq1d 5868 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((ℑ‘𝐴) · (ℜ‘𝐵)) = (0 · (ℜ‘𝐵))) |
9 | recl 10817 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ) | |
10 | 9 | recnd 7948 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ) |
11 | 10 | mul02d 8311 | . . . 4 ⊢ (𝐵 ∈ ℂ → (0 · (ℜ‘𝐵)) = 0) |
12 | 8, 11 | sylan9eq 2223 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) = 0) |
13 | 6, 12 | oveq12d 5871 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) = ((𝐴 · (ℑ‘𝐵)) + 0)) |
14 | imcl 10818 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ) | |
15 | 14 | recnd 7948 | . . . 4 ⊢ (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ) |
16 | mulcl 7901 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (𝐴 · (ℑ‘𝐵)) ∈ ℂ) | |
17 | 1, 15, 16 | syl2an 287 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝐴 · (ℑ‘𝐵)) ∈ ℂ) |
18 | 17 | addid1d 8068 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (ℑ‘𝐵)) + 0) = (𝐴 · (ℑ‘𝐵))) |
19 | 3, 13, 18 | 3eqtrd 2207 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 + caddc 7777 · cmul 7779 ℜcre 10804 ℑcim 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-2 8937 df-cj 10806 df-re 10807 df-im 10808 |
This theorem is referenced by: imdivap 10845 immul2d 10937 |
Copyright terms: Public domain | W3C validator |