ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc3 GIF version

Theorem resqrexlemcalc3 10674
Description: Lemma for resqrex 10684. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc3
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5373 . . . . . . 7 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
21oveq1d 5741 . . . . . 6 (𝑤 = 1 → ((𝐹𝑤)↑2) = ((𝐹‘1)↑2))
32oveq1d 5741 . . . . 5 (𝑤 = 1 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘1)↑2) − 𝐴))
4 oveq1 5733 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
54oveq2d 5742 . . . . . 6 (𝑤 = 1 → (4↑(𝑤 − 1)) = (4↑(1 − 1)))
65oveq2d 5742 . . . . 5 (𝑤 = 1 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(1 − 1))))
73, 6breq12d 3906 . . . 4 (𝑤 = 1 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1)))))
87imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))))
9 fveq2 5373 . . . . . . 7 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
109oveq1d 5741 . . . . . 6 (𝑤 = 𝑘 → ((𝐹𝑤)↑2) = ((𝐹𝑘)↑2))
1110oveq1d 5741 . . . . 5 (𝑤 = 𝑘 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑘)↑2) − 𝐴))
12 oveq1 5733 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1312oveq2d 5742 . . . . . 6 (𝑤 = 𝑘 → (4↑(𝑤 − 1)) = (4↑(𝑘 − 1)))
1413oveq2d 5742 . . . . 5 (𝑤 = 𝑘 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
1511, 14breq12d 3906 . . . 4 (𝑤 = 𝑘 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))))
1615imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))))
17 fveq2 5373 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1817oveq1d 5741 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝐹𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2))
1918oveq1d 5741 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘(𝑘 + 1))↑2) − 𝐴))
20 oveq1 5733 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
2120oveq2d 5742 . . . . . 6 (𝑤 = (𝑘 + 1) → (4↑(𝑤 − 1)) = (4↑((𝑘 + 1) − 1)))
2221oveq2d 5742 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
2319, 22breq12d 3906 . . . 4 (𝑤 = (𝑘 + 1) → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
2423imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
25 fveq2 5373 . . . . . . 7 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
2625oveq1d 5741 . . . . . 6 (𝑤 = 𝑁 → ((𝐹𝑤)↑2) = ((𝐹𝑁)↑2))
2726oveq1d 5741 . . . . 5 (𝑤 = 𝑁 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑁)↑2) − 𝐴))
28 oveq1 5733 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2928oveq2d 5742 . . . . . 6 (𝑤 = 𝑁 → (4↑(𝑤 − 1)) = (4↑(𝑁 − 1)))
3029oveq2d 5742 . . . . 5 (𝑤 = 𝑁 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
3127, 30breq12d 3906 . . . 4 (𝑤 = 𝑁 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
3231imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))))
33 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3433renegcld 8055 . . . . . 6 (𝜑 → -𝐴 ∈ ℝ)
35 0red 7685 . . . . . 6 (𝜑 → 0 ∈ ℝ)
36 resqrexlemex.seq . . . . . . . . . 10 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
37 resqrexlemex.agt0 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3836, 33, 37resqrexlemf 10665 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ+)
39 1nn 8635 . . . . . . . . . 10 1 ∈ ℕ
4039a1i 9 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ)
4138, 40ffvelrnd 5508 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ ℝ+)
4241rpred 9376 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4342resqcld 10337 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ)
4433le0neg2d 8193 . . . . . . 7 (𝜑 → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
4537, 44mpbid 146 . . . . . 6 (𝜑 → -𝐴 ≤ 0)
4634, 35, 43, 45leadd2dd 8234 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) ≤ (((𝐹‘1)↑2) + 0))
4743recnd 7712 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
4833recnd 7712 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4947, 48negsubd 7996 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) = (((𝐹‘1)↑2) − 𝐴))
5047addid1d 7828 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + 0) = ((𝐹‘1)↑2))
5146, 49, 503brtr3d 3922 . . . 4 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ ((𝐹‘1)↑2))
52 1m1e0 8693 . . . . . . . 8 (1 − 1) = 0
5352oveq2i 5737 . . . . . . 7 (4↑(1 − 1)) = (4↑0)
54 4cn 8702 . . . . . . . 8 4 ∈ ℂ
55 exp0 10184 . . . . . . . 8 (4 ∈ ℂ → (4↑0) = 1)
5654, 55ax-mp 7 . . . . . . 7 (4↑0) = 1
5753, 56eqtri 2133 . . . . . 6 (4↑(1 − 1)) = 1
5857oveq2i 5737 . . . . 5 (((𝐹‘1)↑2) / (4↑(1 − 1))) = (((𝐹‘1)↑2) / 1)
5947div1d 8447 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / 1) = ((𝐹‘1)↑2))
6058, 59syl5eq 2157 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(1 − 1))) = ((𝐹‘1)↑2))
6151, 60breqtrrd 3919 . . 3 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))
6238adantr 272 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ+)
63 peano2nn 8636 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6463adantl 273 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
6562, 64ffvelrnd 5508 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
6665rpred 9376 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6766resqcld 10337 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) ∈ ℝ)
6833adantr 272 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
6967, 68resubcld 8056 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7069adantr 272 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7138ffvelrnda 5507 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
7271rpred 9376 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
7372resqcld 10337 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)↑2) ∈ ℝ)
7473, 68resubcld 8056 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
75 4re 8701 . . . . . . . . . . . 12 4 ∈ ℝ
7675a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ)
77 4pos 8721 . . . . . . . . . . . 12 0 < 4
7877a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 4)
7976, 78elrpd 9374 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ+)
8074, 79rerpdivcld 9408 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8180adantr 272 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8243adantr 272 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘1)↑2) ∈ ℝ)
83 nnz 8971 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
84 peano2zm 8990 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
8583, 84syl 14 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℤ)
8685adantl 273 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
8779, 86rpexpcld 10335 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑(𝑘 − 1)) ∈ ℝ+)
8882, 87rerpdivcld 9408 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
8988, 79rerpdivcld 9408 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9089adantr 272 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9136, 33, 37resqrexlemcalc2 10673 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9291adantr 272 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9374, 88, 79lediv1d 9423 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ↔ ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4)))
9493biimpa 292 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9570, 81, 90, 92, 94letrd 7803 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9647ad2antrr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((𝐹‘1)↑2) ∈ ℂ)
9787adantr 272 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℝ+)
9897rpcnd 9378 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℂ)
9954a1i 9 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℂ)
10097rpap0d 9382 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) # 0)
10179adantr 272 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℝ+)
102101rpap0d 9382 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 # 0)
10396, 98, 99, 100, 102divdivap1d 8489 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
104 simpr 109 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
105104nncnd 8638 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
106 pncan1 8052 . . . . . . . . . . . . 13 (𝑘 ∈ ℂ → ((𝑘 + 1) − 1) = 𝑘)
107105, 106syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
108107oveq2d 5742 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
109108adantr 272 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
110 simplr 502 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 𝑘 ∈ ℕ)
111 expm1t 10208 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
11254, 110, 111sylancr 408 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
113109, 112eqtrd 2145 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = ((4↑(𝑘 − 1)) · 4))
114113oveq2d 5742 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
115103, 114eqtr4d 2148 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
11695, 115breqtrd 3917 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
117116ex 114 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
118117expcom 115 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
119118a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
1208, 16, 24, 32, 61, 119nnind 8640 . 2 (𝑁 ∈ ℕ → (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
121120impcom 124 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1312  wcel 1461  {csn 3491   class class class wbr 3893   × cxp 4495  wf 5075  cfv 5079  (class class class)co 5726  cmpo 5728  cc 7539  cr 7540  0cc0 7541  1c1 7542   + caddc 7544   · cmul 7546   < clt 7718  cle 7719  cmin 7850  -cneg 7851   / cdiv 8339  cn 8624  2c2 8675  4c4 8677  cz 8952  +crp 9337  seqcseq 10105  cexp 10179
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-rp 9338  df-seqfrec 10106  df-exp 10180
This theorem is referenced by:  resqrexlemnmsq  10675  resqrexlemga  10681
  Copyright terms: Public domain W3C validator