ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc3 GIF version

Theorem resqrexlemcalc3 11181
Description: Lemma for resqrex 11191. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc3
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . . . . . 7 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
21oveq1d 5937 . . . . . 6 (𝑤 = 1 → ((𝐹𝑤)↑2) = ((𝐹‘1)↑2))
32oveq1d 5937 . . . . 5 (𝑤 = 1 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘1)↑2) − 𝐴))
4 oveq1 5929 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
54oveq2d 5938 . . . . . 6 (𝑤 = 1 → (4↑(𝑤 − 1)) = (4↑(1 − 1)))
65oveq2d 5938 . . . . 5 (𝑤 = 1 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(1 − 1))))
73, 6breq12d 4046 . . . 4 (𝑤 = 1 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1)))))
87imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))))
9 fveq2 5558 . . . . . . 7 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
109oveq1d 5937 . . . . . 6 (𝑤 = 𝑘 → ((𝐹𝑤)↑2) = ((𝐹𝑘)↑2))
1110oveq1d 5937 . . . . 5 (𝑤 = 𝑘 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑘)↑2) − 𝐴))
12 oveq1 5929 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1312oveq2d 5938 . . . . . 6 (𝑤 = 𝑘 → (4↑(𝑤 − 1)) = (4↑(𝑘 − 1)))
1413oveq2d 5938 . . . . 5 (𝑤 = 𝑘 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
1511, 14breq12d 4046 . . . 4 (𝑤 = 𝑘 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))))
1615imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))))
17 fveq2 5558 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1817oveq1d 5937 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝐹𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2))
1918oveq1d 5937 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘(𝑘 + 1))↑2) − 𝐴))
20 oveq1 5929 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
2120oveq2d 5938 . . . . . 6 (𝑤 = (𝑘 + 1) → (4↑(𝑤 − 1)) = (4↑((𝑘 + 1) − 1)))
2221oveq2d 5938 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
2319, 22breq12d 4046 . . . 4 (𝑤 = (𝑘 + 1) → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
2423imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
25 fveq2 5558 . . . . . . 7 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
2625oveq1d 5937 . . . . . 6 (𝑤 = 𝑁 → ((𝐹𝑤)↑2) = ((𝐹𝑁)↑2))
2726oveq1d 5937 . . . . 5 (𝑤 = 𝑁 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑁)↑2) − 𝐴))
28 oveq1 5929 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2928oveq2d 5938 . . . . . 6 (𝑤 = 𝑁 → (4↑(𝑤 − 1)) = (4↑(𝑁 − 1)))
3029oveq2d 5938 . . . . 5 (𝑤 = 𝑁 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
3127, 30breq12d 4046 . . . 4 (𝑤 = 𝑁 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
3231imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))))
33 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3433renegcld 8406 . . . . . 6 (𝜑 → -𝐴 ∈ ℝ)
35 0red 8027 . . . . . 6 (𝜑 → 0 ∈ ℝ)
36 resqrexlemex.seq . . . . . . . . . 10 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
37 resqrexlemex.agt0 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3836, 33, 37resqrexlemf 11172 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ+)
39 1nn 9001 . . . . . . . . . 10 1 ∈ ℕ
4039a1i 9 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ)
4138, 40ffvelcdmd 5698 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ ℝ+)
4241rpred 9771 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4342resqcld 10791 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ)
4433le0neg2d 8545 . . . . . . 7 (𝜑 → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
4537, 44mpbid 147 . . . . . 6 (𝜑 → -𝐴 ≤ 0)
4634, 35, 43, 45leadd2dd 8587 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) ≤ (((𝐹‘1)↑2) + 0))
4743recnd 8055 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
4833recnd 8055 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4947, 48negsubd 8343 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) = (((𝐹‘1)↑2) − 𝐴))
5047addridd 8175 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + 0) = ((𝐹‘1)↑2))
5146, 49, 503brtr3d 4064 . . . 4 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ ((𝐹‘1)↑2))
52 1m1e0 9059 . . . . . . . 8 (1 − 1) = 0
5352oveq2i 5933 . . . . . . 7 (4↑(1 − 1)) = (4↑0)
54 4cn 9068 . . . . . . . 8 4 ∈ ℂ
55 exp0 10635 . . . . . . . 8 (4 ∈ ℂ → (4↑0) = 1)
5654, 55ax-mp 5 . . . . . . 7 (4↑0) = 1
5753, 56eqtri 2217 . . . . . 6 (4↑(1 − 1)) = 1
5857oveq2i 5933 . . . . 5 (((𝐹‘1)↑2) / (4↑(1 − 1))) = (((𝐹‘1)↑2) / 1)
5947div1d 8807 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / 1) = ((𝐹‘1)↑2))
6058, 59eqtrid 2241 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(1 − 1))) = ((𝐹‘1)↑2))
6151, 60breqtrrd 4061 . . 3 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))
6238adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ+)
63 peano2nn 9002 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6463adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
6562, 64ffvelcdmd 5698 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
6665rpred 9771 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6766resqcld 10791 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) ∈ ℝ)
6833adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
6967, 68resubcld 8407 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7069adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7138ffvelcdmda 5697 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
7271rpred 9771 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
7372resqcld 10791 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)↑2) ∈ ℝ)
7473, 68resubcld 8407 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
75 4re 9067 . . . . . . . . . . . 12 4 ∈ ℝ
7675a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ)
77 4pos 9087 . . . . . . . . . . . 12 0 < 4
7877a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 4)
7976, 78elrpd 9768 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ+)
8074, 79rerpdivcld 9803 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8180adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8243adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘1)↑2) ∈ ℝ)
83 nnz 9345 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
84 peano2zm 9364 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
8583, 84syl 14 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℤ)
8685adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
8779, 86rpexpcld 10789 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑(𝑘 − 1)) ∈ ℝ+)
8882, 87rerpdivcld 9803 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
8988, 79rerpdivcld 9803 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9089adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9136, 33, 37resqrexlemcalc2 11180 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9291adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9374, 88, 79lediv1d 9818 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ↔ ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4)))
9493biimpa 296 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9570, 81, 90, 92, 94letrd 8150 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9647ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((𝐹‘1)↑2) ∈ ℂ)
9787adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℝ+)
9897rpcnd 9773 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℂ)
9954a1i 9 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℂ)
10097rpap0d 9777 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) # 0)
10179adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℝ+)
102101rpap0d 9777 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 # 0)
10396, 98, 99, 100, 102divdivap1d 8849 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
104 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
105104nncnd 9004 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
106 pncan1 8403 . . . . . . . . . . . . 13 (𝑘 ∈ ℂ → ((𝑘 + 1) − 1) = 𝑘)
107105, 106syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
108107oveq2d 5938 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
109108adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
110 simplr 528 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 𝑘 ∈ ℕ)
111 expm1t 10659 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
11254, 110, 111sylancr 414 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
113109, 112eqtrd 2229 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = ((4↑(𝑘 − 1)) · 4))
114113oveq2d 5938 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
115103, 114eqtr4d 2232 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
11695, 115breqtrd 4059 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
117116ex 115 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
118117expcom 116 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
119118a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
1208, 16, 24, 32, 61, 119nnind 9006 . 2 (𝑁 ∈ ℕ → (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
121120impcom 125 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3622   class class class wbr 4033   × cxp 4661  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197  -cneg 8198   / cdiv 8699  cn 8990  2c2 9041  4c4 9043  cz 9326  +crp 9728  seqcseq 10539  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  resqrexlemnmsq  11182  resqrexlemga  11188
  Copyright terms: Public domain W3C validator