ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc3 GIF version

Theorem resqrexlemcalc3 10958
Description: Lemma for resqrex 10968. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc3
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5486 . . . . . . 7 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
21oveq1d 5857 . . . . . 6 (𝑤 = 1 → ((𝐹𝑤)↑2) = ((𝐹‘1)↑2))
32oveq1d 5857 . . . . 5 (𝑤 = 1 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘1)↑2) − 𝐴))
4 oveq1 5849 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
54oveq2d 5858 . . . . . 6 (𝑤 = 1 → (4↑(𝑤 − 1)) = (4↑(1 − 1)))
65oveq2d 5858 . . . . 5 (𝑤 = 1 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(1 − 1))))
73, 6breq12d 3995 . . . 4 (𝑤 = 1 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1)))))
87imbi2d 229 . . 3 (𝑤 = 1 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))))
9 fveq2 5486 . . . . . . 7 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
109oveq1d 5857 . . . . . 6 (𝑤 = 𝑘 → ((𝐹𝑤)↑2) = ((𝐹𝑘)↑2))
1110oveq1d 5857 . . . . 5 (𝑤 = 𝑘 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑘)↑2) − 𝐴))
12 oveq1 5849 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1312oveq2d 5858 . . . . . 6 (𝑤 = 𝑘 → (4↑(𝑤 − 1)) = (4↑(𝑘 − 1)))
1413oveq2d 5858 . . . . 5 (𝑤 = 𝑘 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
1511, 14breq12d 3995 . . . 4 (𝑤 = 𝑘 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))))
1615imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))))
17 fveq2 5486 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1817oveq1d 5857 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝐹𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2))
1918oveq1d 5857 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘(𝑘 + 1))↑2) − 𝐴))
20 oveq1 5849 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
2120oveq2d 5858 . . . . . 6 (𝑤 = (𝑘 + 1) → (4↑(𝑤 − 1)) = (4↑((𝑘 + 1) − 1)))
2221oveq2d 5858 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
2319, 22breq12d 3995 . . . 4 (𝑤 = (𝑘 + 1) → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
2423imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
25 fveq2 5486 . . . . . . 7 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
2625oveq1d 5857 . . . . . 6 (𝑤 = 𝑁 → ((𝐹𝑤)↑2) = ((𝐹𝑁)↑2))
2726oveq1d 5857 . . . . 5 (𝑤 = 𝑁 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑁)↑2) − 𝐴))
28 oveq1 5849 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2928oveq2d 5858 . . . . . 6 (𝑤 = 𝑁 → (4↑(𝑤 − 1)) = (4↑(𝑁 − 1)))
3029oveq2d 5858 . . . . 5 (𝑤 = 𝑁 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
3127, 30breq12d 3995 . . . 4 (𝑤 = 𝑁 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
3231imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))))
33 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3433renegcld 8278 . . . . . 6 (𝜑 → -𝐴 ∈ ℝ)
35 0red 7900 . . . . . 6 (𝜑 → 0 ∈ ℝ)
36 resqrexlemex.seq . . . . . . . . . 10 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
37 resqrexlemex.agt0 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3836, 33, 37resqrexlemf 10949 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ+)
39 1nn 8868 . . . . . . . . . 10 1 ∈ ℕ
4039a1i 9 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ)
4138, 40ffvelrnd 5621 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ ℝ+)
4241rpred 9632 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4342resqcld 10614 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ)
4433le0neg2d 8416 . . . . . . 7 (𝜑 → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
4537, 44mpbid 146 . . . . . 6 (𝜑 → -𝐴 ≤ 0)
4634, 35, 43, 45leadd2dd 8458 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) ≤ (((𝐹‘1)↑2) + 0))
4743recnd 7927 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
4833recnd 7927 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4947, 48negsubd 8215 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) = (((𝐹‘1)↑2) − 𝐴))
5047addid1d 8047 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + 0) = ((𝐹‘1)↑2))
5146, 49, 503brtr3d 4013 . . . 4 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ ((𝐹‘1)↑2))
52 1m1e0 8926 . . . . . . . 8 (1 − 1) = 0
5352oveq2i 5853 . . . . . . 7 (4↑(1 − 1)) = (4↑0)
54 4cn 8935 . . . . . . . 8 4 ∈ ℂ
55 exp0 10459 . . . . . . . 8 (4 ∈ ℂ → (4↑0) = 1)
5654, 55ax-mp 5 . . . . . . 7 (4↑0) = 1
5753, 56eqtri 2186 . . . . . 6 (4↑(1 − 1)) = 1
5857oveq2i 5853 . . . . 5 (((𝐹‘1)↑2) / (4↑(1 − 1))) = (((𝐹‘1)↑2) / 1)
5947div1d 8676 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / 1) = ((𝐹‘1)↑2))
6058, 59syl5eq 2211 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(1 − 1))) = ((𝐹‘1)↑2))
6151, 60breqtrrd 4010 . . 3 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))
6238adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ+)
63 peano2nn 8869 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6463adantl 275 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
6562, 64ffvelrnd 5621 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
6665rpred 9632 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6766resqcld 10614 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) ∈ ℝ)
6833adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
6967, 68resubcld 8279 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7069adantr 274 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7138ffvelrnda 5620 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
7271rpred 9632 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
7372resqcld 10614 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)↑2) ∈ ℝ)
7473, 68resubcld 8279 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
75 4re 8934 . . . . . . . . . . . 12 4 ∈ ℝ
7675a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ)
77 4pos 8954 . . . . . . . . . . . 12 0 < 4
7877a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 4)
7976, 78elrpd 9629 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ+)
8074, 79rerpdivcld 9664 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8180adantr 274 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8243adantr 274 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘1)↑2) ∈ ℝ)
83 nnz 9210 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
84 peano2zm 9229 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
8583, 84syl 14 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℤ)
8685adantl 275 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
8779, 86rpexpcld 10612 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑(𝑘 − 1)) ∈ ℝ+)
8882, 87rerpdivcld 9664 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
8988, 79rerpdivcld 9664 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9089adantr 274 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9136, 33, 37resqrexlemcalc2 10957 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9291adantr 274 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9374, 88, 79lediv1d 9679 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ↔ ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4)))
9493biimpa 294 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9570, 81, 90, 92, 94letrd 8022 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9647ad2antrr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((𝐹‘1)↑2) ∈ ℂ)
9787adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℝ+)
9897rpcnd 9634 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℂ)
9954a1i 9 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℂ)
10097rpap0d 9638 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) # 0)
10179adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℝ+)
102101rpap0d 9638 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 # 0)
10396, 98, 99, 100, 102divdivap1d 8718 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
104 simpr 109 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
105104nncnd 8871 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
106 pncan1 8275 . . . . . . . . . . . . 13 (𝑘 ∈ ℂ → ((𝑘 + 1) − 1) = 𝑘)
107105, 106syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
108107oveq2d 5858 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
109108adantr 274 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
110 simplr 520 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 𝑘 ∈ ℕ)
111 expm1t 10483 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
11254, 110, 111sylancr 411 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
113109, 112eqtrd 2198 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = ((4↑(𝑘 − 1)) · 4))
114113oveq2d 5858 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
115103, 114eqtr4d 2201 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
11695, 115breqtrd 4008 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
117116ex 114 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
118117expcom 115 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
119118a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
1208, 16, 24, 32, 61, 119nnind 8873 . 2 (𝑁 ∈ ℕ → (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
121120impcom 124 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  {csn 3576   class class class wbr 3982   × cxp 4602  wf 5184  cfv 5188  (class class class)co 5842  cmpo 5844  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069  -cneg 8070   / cdiv 8568  cn 8857  2c2 8908  4c4 8910  cz 9191  +crp 9589  seqcseq 10380  cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  resqrexlemnmsq  10959  resqrexlemga  10965
  Copyright terms: Public domain W3C validator