ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc3 GIF version

Theorem resqrexlemcalc3 11198
Description: Lemma for resqrex 11208. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc3 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc3
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5561 . . . . . . 7 (𝑤 = 1 → (𝐹𝑤) = (𝐹‘1))
21oveq1d 5940 . . . . . 6 (𝑤 = 1 → ((𝐹𝑤)↑2) = ((𝐹‘1)↑2))
32oveq1d 5940 . . . . 5 (𝑤 = 1 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘1)↑2) − 𝐴))
4 oveq1 5932 . . . . . . 7 (𝑤 = 1 → (𝑤 − 1) = (1 − 1))
54oveq2d 5941 . . . . . 6 (𝑤 = 1 → (4↑(𝑤 − 1)) = (4↑(1 − 1)))
65oveq2d 5941 . . . . 5 (𝑤 = 1 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(1 − 1))))
73, 6breq12d 4047 . . . 4 (𝑤 = 1 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1)))))
87imbi2d 230 . . 3 (𝑤 = 1 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))))
9 fveq2 5561 . . . . . . 7 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
109oveq1d 5940 . . . . . 6 (𝑤 = 𝑘 → ((𝐹𝑤)↑2) = ((𝐹𝑘)↑2))
1110oveq1d 5940 . . . . 5 (𝑤 = 𝑘 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑘)↑2) − 𝐴))
12 oveq1 5932 . . . . . . 7 (𝑤 = 𝑘 → (𝑤 − 1) = (𝑘 − 1))
1312oveq2d 5941 . . . . . 6 (𝑤 = 𝑘 → (4↑(𝑤 − 1)) = (4↑(𝑘 − 1)))
1413oveq2d 5941 . . . . 5 (𝑤 = 𝑘 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
1511, 14breq12d 4047 . . . 4 (𝑤 = 𝑘 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))))
1615imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))))
17 fveq2 5561 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1817oveq1d 5940 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝐹𝑤)↑2) = ((𝐹‘(𝑘 + 1))↑2))
1918oveq1d 5940 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹‘(𝑘 + 1))↑2) − 𝐴))
20 oveq1 5932 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝑤 − 1) = ((𝑘 + 1) − 1))
2120oveq2d 5941 . . . . . 6 (𝑤 = (𝑘 + 1) → (4↑(𝑤 − 1)) = (4↑((𝑘 + 1) − 1)))
2221oveq2d 5941 . . . . 5 (𝑤 = (𝑘 + 1) → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
2319, 22breq12d 4047 . . . 4 (𝑤 = (𝑘 + 1) → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
2423imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
25 fveq2 5561 . . . . . . 7 (𝑤 = 𝑁 → (𝐹𝑤) = (𝐹𝑁))
2625oveq1d 5940 . . . . . 6 (𝑤 = 𝑁 → ((𝐹𝑤)↑2) = ((𝐹𝑁)↑2))
2726oveq1d 5940 . . . . 5 (𝑤 = 𝑁 → (((𝐹𝑤)↑2) − 𝐴) = (((𝐹𝑁)↑2) − 𝐴))
28 oveq1 5932 . . . . . . 7 (𝑤 = 𝑁 → (𝑤 − 1) = (𝑁 − 1))
2928oveq2d 5941 . . . . . 6 (𝑤 = 𝑁 → (4↑(𝑤 − 1)) = (4↑(𝑁 − 1)))
3029oveq2d 5941 . . . . 5 (𝑤 = 𝑁 → (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) = (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
3127, 30breq12d 4047 . . . 4 (𝑤 = 𝑁 → ((((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1))) ↔ (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
3231imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (((𝐹𝑤)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑤 − 1)))) ↔ (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))))
33 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3433renegcld 8423 . . . . . 6 (𝜑 → -𝐴 ∈ ℝ)
35 0red 8044 . . . . . 6 (𝜑 → 0 ∈ ℝ)
36 resqrexlemex.seq . . . . . . . . . 10 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
37 resqrexlemex.agt0 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
3836, 33, 37resqrexlemf 11189 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ+)
39 1nn 9018 . . . . . . . . . 10 1 ∈ ℕ
4039a1i 9 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ)
4138, 40ffvelcdmd 5701 . . . . . . . 8 (𝜑 → (𝐹‘1) ∈ ℝ+)
4241rpred 9788 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4342resqcld 10808 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ)
4433le0neg2d 8562 . . . . . . 7 (𝜑 → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0))
4537, 44mpbid 147 . . . . . 6 (𝜑 → -𝐴 ≤ 0)
4634, 35, 43, 45leadd2dd 8604 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) ≤ (((𝐹‘1)↑2) + 0))
4743recnd 8072 . . . . . 6 (𝜑 → ((𝐹‘1)↑2) ∈ ℂ)
4833recnd 8072 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4947, 48negsubd 8360 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + -𝐴) = (((𝐹‘1)↑2) − 𝐴))
5047addridd 8192 . . . . 5 (𝜑 → (((𝐹‘1)↑2) + 0) = ((𝐹‘1)↑2))
5146, 49, 503brtr3d 4065 . . . 4 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ ((𝐹‘1)↑2))
52 1m1e0 9076 . . . . . . . 8 (1 − 1) = 0
5352oveq2i 5936 . . . . . . 7 (4↑(1 − 1)) = (4↑0)
54 4cn 9085 . . . . . . . 8 4 ∈ ℂ
55 exp0 10652 . . . . . . . 8 (4 ∈ ℂ → (4↑0) = 1)
5654, 55ax-mp 5 . . . . . . 7 (4↑0) = 1
5753, 56eqtri 2217 . . . . . 6 (4↑(1 − 1)) = 1
5857oveq2i 5936 . . . . 5 (((𝐹‘1)↑2) / (4↑(1 − 1))) = (((𝐹‘1)↑2) / 1)
5947div1d 8824 . . . . 5 (𝜑 → (((𝐹‘1)↑2) / 1) = ((𝐹‘1)↑2))
6058, 59eqtrid 2241 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(1 − 1))) = ((𝐹‘1)↑2))
6151, 60breqtrrd 4062 . . 3 (𝜑 → (((𝐹‘1)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(1 − 1))))
6238adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ+)
63 peano2nn 9019 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
6463adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
6562, 64ffvelcdmd 5701 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
6665rpred 9788 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
6766resqcld 10808 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1))↑2) ∈ ℝ)
6833adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
6967, 68resubcld 8424 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7069adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ∈ ℝ)
7138ffvelcdmda 5700 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ+)
7271rpred 9788 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
7372resqcld 10808 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)↑2) ∈ ℝ)
7473, 68resubcld 8424 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
75 4re 9084 . . . . . . . . . . . 12 4 ∈ ℝ
7675a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ)
77 4pos 9104 . . . . . . . . . . . 12 0 < 4
7877a1i 9 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → 0 < 4)
7976, 78elrpd 9785 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 4 ∈ ℝ+)
8074, 79rerpdivcld 9820 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8180adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ∈ ℝ)
8243adantr 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘1)↑2) ∈ ℝ)
83 nnz 9362 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
84 peano2zm 9381 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
8583, 84syl 14 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℤ)
8685adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 − 1) ∈ ℤ)
8779, 86rpexpcld 10806 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑(𝑘 − 1)) ∈ ℝ+)
8882, 87rerpdivcld 9820 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
8988, 79rerpdivcld 9820 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9089adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) ∈ ℝ)
9136, 33, 37resqrexlemcalc2 11197 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9291adantr 276 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑘)↑2) − 𝐴) / 4))
9374, 88, 79lediv1d 9835 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ↔ ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4)))
9493biimpa 296 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹𝑘)↑2) − 𝐴) / 4) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9570, 81, 90, 92, 94letrd 8167 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4))
9647ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((𝐹‘1)↑2) ∈ ℂ)
9787adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℝ+)
9897rpcnd 9790 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) ∈ ℂ)
9954a1i 9 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℂ)
10097rpap0d 9794 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑(𝑘 − 1)) # 0)
10179adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 ∈ ℝ+)
102101rpap0d 9794 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 4 # 0)
10396, 98, 99, 100, 102divdivap1d 8866 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
104 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
105104nncnd 9021 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
106 pncan1 8420 . . . . . . . . . . . . 13 (𝑘 ∈ ℂ → ((𝑘 + 1) − 1) = 𝑘)
107105, 106syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
108107oveq2d 5941 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
109108adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = (4↑𝑘))
110 simplr 528 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → 𝑘 ∈ ℕ)
111 expm1t 10676 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
11254, 110, 111sylancr 414 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑𝑘) = ((4↑(𝑘 − 1)) · 4))
113109, 112eqtrd 2229 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (4↑((𝑘 + 1) − 1)) = ((4↑(𝑘 − 1)) · 4))
114113oveq2d 5941 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))) = (((𝐹‘1)↑2) / ((4↑(𝑘 − 1)) · 4)))
115103, 114eqtr4d 2232 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → ((((𝐹‘1)↑2) / (4↑(𝑘 − 1))) / 4) = (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
11695, 115breqtrd 4060 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))
117116ex 115 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1)))))
118117expcom 116 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ((((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
119118a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝜑 → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1)))) → (𝜑 → (((𝐹‘(𝑘 + 1))↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑((𝑘 + 1) − 1))))))
1208, 16, 24, 32, 61, 119nnind 9023 . 2 (𝑁 ∈ ℕ → (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))))
121120impcom 125 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3623   class class class wbr 4034   × cxp 4662  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214  -cneg 8215   / cdiv 8716  cn 9007  2c2 9058  4c4 9060  cz 9343  +crp 9745  seqcseq 10556  cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  resqrexlemnmsq  11199  resqrexlemga  11205
  Copyright terms: Public domain W3C validator