Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sinhalfpip | GIF version |
Description: The sine of π / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008.) |
Ref | Expression |
---|---|
sinhalfpip | ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfpire 13764 | . . . 4 ⊢ (π / 2) ∈ ℝ | |
2 | 1 | recni 7944 | . . 3 ⊢ (π / 2) ∈ ℂ |
3 | sinadd 11710 | . . 3 ⊢ (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘((π / 2) + 𝐴)) = (((sin‘(π / 2)) · (cos‘𝐴)) + ((cos‘(π / 2)) · (sin‘𝐴)))) | |
4 | 2, 3 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (((sin‘(π / 2)) · (cos‘𝐴)) + ((cos‘(π / 2)) · (sin‘𝐴)))) |
5 | sinhalfpi 13768 | . . . . 5 ⊢ (sin‘(π / 2)) = 1 | |
6 | 5 | oveq1i 5875 | . . . 4 ⊢ ((sin‘(π / 2)) · (cos‘𝐴)) = (1 · (cos‘𝐴)) |
7 | coscl 11681 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
8 | 7 | mulid2d 7950 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 · (cos‘𝐴)) = (cos‘𝐴)) |
9 | 6, 8 | eqtrid 2220 | . . 3 ⊢ (𝐴 ∈ ℂ → ((sin‘(π / 2)) · (cos‘𝐴)) = (cos‘𝐴)) |
10 | coshalfpi 13769 | . . . . 5 ⊢ (cos‘(π / 2)) = 0 | |
11 | 10 | oveq1i 5875 | . . . 4 ⊢ ((cos‘(π / 2)) · (sin‘𝐴)) = (0 · (sin‘𝐴)) |
12 | sincl 11680 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
13 | 12 | mul02d 8323 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 · (sin‘𝐴)) = 0) |
14 | 11, 13 | eqtrid 2220 | . . 3 ⊢ (𝐴 ∈ ℂ → ((cos‘(π / 2)) · (sin‘𝐴)) = 0) |
15 | 9, 14 | oveq12d 5883 | . 2 ⊢ (𝐴 ∈ ℂ → (((sin‘(π / 2)) · (cos‘𝐴)) + ((cos‘(π / 2)) · (sin‘𝐴))) = ((cos‘𝐴) + 0)) |
16 | 7 | addid1d 8080 | . 2 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) + 0) = (cos‘𝐴)) |
17 | 4, 15, 16 | 3eqtrd 2212 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 ℂcc 7784 0cc0 7786 1c1 7787 + caddc 7789 · cmul 7791 / cdiv 8601 2c2 8941 sincsin 11618 cosccos 11619 πcpi 11621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 ax-pre-suploc 7907 ax-addf 7908 ax-mulf 7909 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-disj 3976 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-of 6073 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-frec 6382 df-1o 6407 df-oadd 6411 df-er 6525 df-map 6640 df-pm 6641 df-en 6731 df-dom 6732 df-fin 6733 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-6 8953 df-7 8954 df-8 8955 df-9 8956 df-n0 9148 df-z 9225 df-uz 9500 df-q 9591 df-rp 9623 df-xneg 9741 df-xadd 9742 df-ioo 9861 df-ioc 9862 df-ico 9863 df-icc 9864 df-fz 9978 df-fzo 10111 df-seqfrec 10414 df-exp 10488 df-fac 10672 df-bc 10694 df-ihash 10722 df-shft 10790 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-clim 11253 df-sumdc 11328 df-ef 11622 df-sin 11624 df-cos 11625 df-pi 11627 df-rest 12610 df-topgen 12629 df-psmet 13038 df-xmet 13039 df-met 13040 df-bl 13041 df-mopn 13042 df-top 13047 df-topon 13060 df-bases 13092 df-ntr 13147 df-cn 13239 df-cnp 13240 df-tx 13304 df-cncf 13609 df-limced 13676 df-dvap 13677 |
This theorem is referenced by: sincosq2sgn 13799 sincosq3sgn 13800 sincosq4sgn 13801 cosq23lt0 13805 |
Copyright terms: Public domain | W3C validator |