| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > negsub | GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-neg 8200 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 2 | 1 | oveq2i 5933 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) | 
| 3 | 2 | a1i 9 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) | 
| 4 | 0cn 8018 | . . 3 ⊢ 0 ∈ ℂ | |
| 5 | addsubass 8236 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
| 6 | 4, 5 | mp3an2 1336 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | 
| 7 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 8 | 7 | addridd 8175 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) | 
| 9 | 8 | oveq1d 5937 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) | 
| 10 | 3, 6, 9 | 3eqtr2d 2235 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 0cc0 7879 + caddc 7882 − cmin 8197 -cneg 8198 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 | 
| This theorem is referenced by: negdi2 8284 negsubdi2 8285 resubcli 8289 resubcl 8290 negsubi 8304 negsubd 8343 submul2 8425 mulsub 8427 subap0 8670 divsubdirap 8735 zsubcl 9367 difgtsumgt 9395 elz2 9397 qsubcl 9712 rexsub 9928 fzsubel 10135 expsubap 10679 binom2sub 10745 resub 11035 imsub 11043 cjsub 11057 cjreim 11068 absdiflt 11257 absdifle 11258 abs2dif2 11272 subcn2 11476 efsub 11846 efi4p 11882 sinsub 11905 cossub 11906 demoivreALT 11939 dvdssub 12003 modgcd 12158 gzsubcl 12549 cnfldsub 14131 wilthlem1 15216 lgsvalmod 15260 | 
| Copyright terms: Public domain | W3C validator |