ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omgadd GIF version

Theorem omgadd 10737
Description: Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypothesis
Ref Expression
omgadd.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
omgadd ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))

Proof of Theorem omgadd
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . . 6 (𝑛 = ∅ → (𝐴 +o 𝑛) = (𝐴 +o ∅))
21fveq2d 5500 . . . . 5 (𝑛 = ∅ → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o ∅)))
3 fveq2 5496 . . . . . 6 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
43oveq2d 5869 . . . . 5 (𝑛 = ∅ → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺‘∅)))
52, 4eqeq12d 2185 . . . 4 (𝑛 = ∅ → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅))))
65imbi2d 229 . . 3 (𝑛 = ∅ → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅)))))
7 oveq2 5861 . . . . . 6 (𝑛 = 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o 𝑧))
87fveq2d 5500 . . . . 5 (𝑛 = 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝑧)))
9 fveq2 5496 . . . . . 6 (𝑛 = 𝑧 → (𝐺𝑛) = (𝐺𝑧))
109oveq2d 5869 . . . . 5 (𝑛 = 𝑧 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺𝑧)))
118, 10eqeq12d 2185 . . . 4 (𝑛 = 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))))
1211imbi2d 229 . . 3 (𝑛 = 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)))))
13 oveq2 5861 . . . . . 6 (𝑛 = suc 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o suc 𝑧))
1413fveq2d 5500 . . . . 5 (𝑛 = suc 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o suc 𝑧)))
15 fveq2 5496 . . . . . 6 (𝑛 = suc 𝑧 → (𝐺𝑛) = (𝐺‘suc 𝑧))
1615oveq2d 5869 . . . . 5 (𝑛 = suc 𝑧 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
1714, 16eqeq12d 2185 . . . 4 (𝑛 = suc 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧))))
1817imbi2d 229 . . 3 (𝑛 = suc 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
19 oveq2 5861 . . . . . 6 (𝑛 = 𝐵 → (𝐴 +o 𝑛) = (𝐴 +o 𝐵))
2019fveq2d 5500 . . . . 5 (𝑛 = 𝐵 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝐵)))
21 fveq2 5496 . . . . . 6 (𝑛 = 𝐵 → (𝐺𝑛) = (𝐺𝐵))
2221oveq2d 5869 . . . . 5 (𝑛 = 𝐵 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺𝐵)))
2320, 22eqeq12d 2185 . . . 4 (𝑛 = 𝐵 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵))))
2423imbi2d 229 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))))
25 omgadd.1 . . . . . . . . 9 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2625frechashgf1o 10384 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ0
27 f1of 5442 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
2826, 27ax-mp 5 . . . . . . 7 𝐺:ω⟶ℕ0
2928ffvelrni 5630 . . . . . 6 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℕ0)
3029nn0cnd 9190 . . . . 5 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℂ)
3130addid1d 8068 . . . 4 (𝐴 ∈ ω → ((𝐺𝐴) + 0) = (𝐺𝐴))
32 0zd 9224 . . . . . 6 (𝐴 ∈ ω → 0 ∈ ℤ)
3332, 25frec2uz0d 10355 . . . . 5 (𝐴 ∈ ω → (𝐺‘∅) = 0)
3433oveq2d 5869 . . . 4 (𝐴 ∈ ω → ((𝐺𝐴) + (𝐺‘∅)) = ((𝐺𝐴) + 0))
35 nna0 6453 . . . . 5 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
3635fveq2d 5500 . . . 4 (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = (𝐺𝐴))
3731, 34, 363eqtr4rd 2214 . . 3 (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅)))
38 nnasuc 6455 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧))
3938fveq2d 5500 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = (𝐺‘suc (𝐴 +o 𝑧)))
40 0zd 9224 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → 0 ∈ ℤ)
41 nnacl 6459 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o 𝑧) ∈ ω)
4240, 25, 41frec2uzsucd 10357 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘suc (𝐴 +o 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
4339, 42eqtrd 2203 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
44433adant3 1012 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
45303ad2ant1 1013 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺𝐴) ∈ ℂ)
4628ffvelrni 5630 . . . . . . . . . . 11 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℕ0)
4746nn0cnd 9190 . . . . . . . . . 10 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℂ)
48473ad2ant2 1014 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺𝑧) ∈ ℂ)
49 1cnd 7936 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → 1 ∈ ℂ)
5045, 48, 49addassd 7942 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (((𝐺𝐴) + (𝐺𝑧)) + 1) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
51 oveq1 5860 . . . . . . . . 9 ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺𝐴) + (𝐺𝑧)) + 1))
52513ad2ant3 1015 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺𝐴) + (𝐺𝑧)) + 1))
53 0zd 9224 . . . . . . . . . . 11 (𝑧 ∈ ω → 0 ∈ ℤ)
54 id 19 . . . . . . . . . . 11 (𝑧 ∈ ω → 𝑧 ∈ ω)
5553, 25, 54frec2uzsucd 10357 . . . . . . . . . 10 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
5655oveq2d 5869 . . . . . . . . 9 (𝑧 ∈ ω → ((𝐺𝐴) + (𝐺‘suc 𝑧)) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
57563ad2ant2 1014 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺𝐴) + (𝐺‘suc 𝑧)) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
5850, 52, 573eqtr4d 2213 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
5944, 58eqtrd 2203 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
60593expia 1200 . . . . 5 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧))))
6160expcom 115 . . . 4 (𝑧 ∈ ω → (𝐴 ∈ ω → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
6261a2d 26 . . 3 (𝑧 ∈ ω → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
636, 12, 18, 24, 37, 62finds 4584 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵))))
6463impcom 124 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  c0 3414  cmpt 4050  suc csuc 4350  ωcom 4574  wf 5194  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  freccfrec 6369   +o coa 6392  cc 7772  0cc0 7774  1c1 7775   + caddc 7777  0cn0 9135  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-oadd 6399  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  hashun  10740
  Copyright terms: Public domain W3C validator