ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omgadd GIF version

Theorem omgadd 10911
Description: Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypothesis
Ref Expression
omgadd.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
omgadd ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))

Proof of Theorem omgadd
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . . . 6 (𝑛 = ∅ → (𝐴 +o 𝑛) = (𝐴 +o ∅))
21fveq2d 5565 . . . . 5 (𝑛 = ∅ → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o ∅)))
3 fveq2 5561 . . . . . 6 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
43oveq2d 5941 . . . . 5 (𝑛 = ∅ → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺‘∅)))
52, 4eqeq12d 2211 . . . 4 (𝑛 = ∅ → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅))))
65imbi2d 230 . . 3 (𝑛 = ∅ → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅)))))
7 oveq2 5933 . . . . . 6 (𝑛 = 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o 𝑧))
87fveq2d 5565 . . . . 5 (𝑛 = 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝑧)))
9 fveq2 5561 . . . . . 6 (𝑛 = 𝑧 → (𝐺𝑛) = (𝐺𝑧))
109oveq2d 5941 . . . . 5 (𝑛 = 𝑧 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺𝑧)))
118, 10eqeq12d 2211 . . . 4 (𝑛 = 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))))
1211imbi2d 230 . . 3 (𝑛 = 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)))))
13 oveq2 5933 . . . . . 6 (𝑛 = suc 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o suc 𝑧))
1413fveq2d 5565 . . . . 5 (𝑛 = suc 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o suc 𝑧)))
15 fveq2 5561 . . . . . 6 (𝑛 = suc 𝑧 → (𝐺𝑛) = (𝐺‘suc 𝑧))
1615oveq2d 5941 . . . . 5 (𝑛 = suc 𝑧 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
1714, 16eqeq12d 2211 . . . 4 (𝑛 = suc 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧))))
1817imbi2d 230 . . 3 (𝑛 = suc 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
19 oveq2 5933 . . . . . 6 (𝑛 = 𝐵 → (𝐴 +o 𝑛) = (𝐴 +o 𝐵))
2019fveq2d 5565 . . . . 5 (𝑛 = 𝐵 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝐵)))
21 fveq2 5561 . . . . . 6 (𝑛 = 𝐵 → (𝐺𝑛) = (𝐺𝐵))
2221oveq2d 5941 . . . . 5 (𝑛 = 𝐵 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺𝐵)))
2320, 22eqeq12d 2211 . . . 4 (𝑛 = 𝐵 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵))))
2423imbi2d 230 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))))
25 omgadd.1 . . . . . . . . 9 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2625frechashgf1o 10537 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ0
27 f1of 5507 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
2826, 27ax-mp 5 . . . . . . 7 𝐺:ω⟶ℕ0
2928ffvelcdmi 5699 . . . . . 6 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℕ0)
3029nn0cnd 9321 . . . . 5 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℂ)
3130addridd 8192 . . . 4 (𝐴 ∈ ω → ((𝐺𝐴) + 0) = (𝐺𝐴))
32 0zd 9355 . . . . . 6 (𝐴 ∈ ω → 0 ∈ ℤ)
3332, 25frec2uz0d 10508 . . . . 5 (𝐴 ∈ ω → (𝐺‘∅) = 0)
3433oveq2d 5941 . . . 4 (𝐴 ∈ ω → ((𝐺𝐴) + (𝐺‘∅)) = ((𝐺𝐴) + 0))
35 nna0 6541 . . . . 5 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
3635fveq2d 5565 . . . 4 (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = (𝐺𝐴))
3731, 34, 363eqtr4rd 2240 . . 3 (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅)))
38 nnasuc 6543 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧))
3938fveq2d 5565 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = (𝐺‘suc (𝐴 +o 𝑧)))
40 0zd 9355 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → 0 ∈ ℤ)
41 nnacl 6547 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o 𝑧) ∈ ω)
4240, 25, 41frec2uzsucd 10510 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘suc (𝐴 +o 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
4339, 42eqtrd 2229 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
44433adant3 1019 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
45303ad2ant1 1020 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺𝐴) ∈ ℂ)
4628ffvelcdmi 5699 . . . . . . . . . . 11 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℕ0)
4746nn0cnd 9321 . . . . . . . . . 10 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℂ)
48473ad2ant2 1021 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺𝑧) ∈ ℂ)
49 1cnd 8059 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → 1 ∈ ℂ)
5045, 48, 49addassd 8066 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (((𝐺𝐴) + (𝐺𝑧)) + 1) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
51 oveq1 5932 . . . . . . . . 9 ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺𝐴) + (𝐺𝑧)) + 1))
52513ad2ant3 1022 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺𝐴) + (𝐺𝑧)) + 1))
53 0zd 9355 . . . . . . . . . . 11 (𝑧 ∈ ω → 0 ∈ ℤ)
54 id 19 . . . . . . . . . . 11 (𝑧 ∈ ω → 𝑧 ∈ ω)
5553, 25, 54frec2uzsucd 10510 . . . . . . . . . 10 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
5655oveq2d 5941 . . . . . . . . 9 (𝑧 ∈ ω → ((𝐺𝐴) + (𝐺‘suc 𝑧)) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
57563ad2ant2 1021 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺𝐴) + (𝐺‘suc 𝑧)) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
5850, 52, 573eqtr4d 2239 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
5944, 58eqtrd 2229 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
60593expia 1207 . . . . 5 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧))))
6160expcom 116 . . . 4 (𝑧 ∈ ω → (𝐴 ∈ ω → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
6261a2d 26 . . 3 (𝑧 ∈ ω → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
636, 12, 18, 24, 37, 62finds 4637 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵))))
6463impcom 125 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  c0 3451  cmpt 4095  suc csuc 4401  ωcom 4627  wf 5255  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  freccfrec 6457   +o coa 6480  cc 7894  0cc0 7896  1c1 7897   + caddc 7899  0cn0 9266  cz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-oadd 6487  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by:  hashun  10914
  Copyright terms: Public domain W3C validator