ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omgadd GIF version

Theorem omgadd 10560
Description: Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
Hypothesis
Ref Expression
omgadd.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
omgadd ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))

Proof of Theorem omgadd
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . 6 (𝑛 = ∅ → (𝐴 +o 𝑛) = (𝐴 +o ∅))
21fveq2d 5425 . . . . 5 (𝑛 = ∅ → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o ∅)))
3 fveq2 5421 . . . . . 6 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
43oveq2d 5790 . . . . 5 (𝑛 = ∅ → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺‘∅)))
52, 4eqeq12d 2154 . . . 4 (𝑛 = ∅ → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅))))
65imbi2d 229 . . 3 (𝑛 = ∅ → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅)))))
7 oveq2 5782 . . . . . 6 (𝑛 = 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o 𝑧))
87fveq2d 5425 . . . . 5 (𝑛 = 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝑧)))
9 fveq2 5421 . . . . . 6 (𝑛 = 𝑧 → (𝐺𝑛) = (𝐺𝑧))
109oveq2d 5790 . . . . 5 (𝑛 = 𝑧 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺𝑧)))
118, 10eqeq12d 2154 . . . 4 (𝑛 = 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))))
1211imbi2d 229 . . 3 (𝑛 = 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)))))
13 oveq2 5782 . . . . . 6 (𝑛 = suc 𝑧 → (𝐴 +o 𝑛) = (𝐴 +o suc 𝑧))
1413fveq2d 5425 . . . . 5 (𝑛 = suc 𝑧 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o suc 𝑧)))
15 fveq2 5421 . . . . . 6 (𝑛 = suc 𝑧 → (𝐺𝑛) = (𝐺‘suc 𝑧))
1615oveq2d 5790 . . . . 5 (𝑛 = suc 𝑧 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
1714, 16eqeq12d 2154 . . . 4 (𝑛 = suc 𝑧 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧))))
1817imbi2d 229 . . 3 (𝑛 = suc 𝑧 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
19 oveq2 5782 . . . . . 6 (𝑛 = 𝐵 → (𝐴 +o 𝑛) = (𝐴 +o 𝐵))
2019fveq2d 5425 . . . . 5 (𝑛 = 𝐵 → (𝐺‘(𝐴 +o 𝑛)) = (𝐺‘(𝐴 +o 𝐵)))
21 fveq2 5421 . . . . . 6 (𝑛 = 𝐵 → (𝐺𝑛) = (𝐺𝐵))
2221oveq2d 5790 . . . . 5 (𝑛 = 𝐵 → ((𝐺𝐴) + (𝐺𝑛)) = ((𝐺𝐴) + (𝐺𝐵)))
2320, 22eqeq12d 2154 . . . 4 (𝑛 = 𝐵 → ((𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛)) ↔ (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵))))
2423imbi2d 229 . . 3 (𝑛 = 𝐵 → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑛)) = ((𝐺𝐴) + (𝐺𝑛))) ↔ (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))))
25 omgadd.1 . . . . . . . . 9 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2625frechashgf1o 10213 . . . . . . . 8 𝐺:ω–1-1-onto→ℕ0
27 f1of 5367 . . . . . . . 8 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
2826, 27ax-mp 5 . . . . . . 7 𝐺:ω⟶ℕ0
2928ffvelrni 5554 . . . . . 6 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℕ0)
3029nn0cnd 9044 . . . . 5 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℂ)
3130addid1d 7923 . . . 4 (𝐴 ∈ ω → ((𝐺𝐴) + 0) = (𝐺𝐴))
32 0zd 9078 . . . . . 6 (𝐴 ∈ ω → 0 ∈ ℤ)
3332, 25frec2uz0d 10184 . . . . 5 (𝐴 ∈ ω → (𝐺‘∅) = 0)
3433oveq2d 5790 . . . 4 (𝐴 ∈ ω → ((𝐺𝐴) + (𝐺‘∅)) = ((𝐺𝐴) + 0))
35 nna0 6370 . . . . 5 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
3635fveq2d 5425 . . . 4 (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = (𝐺𝐴))
3731, 34, 363eqtr4rd 2183 . . 3 (𝐴 ∈ ω → (𝐺‘(𝐴 +o ∅)) = ((𝐺𝐴) + (𝐺‘∅)))
38 nnasuc 6372 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o suc 𝑧) = suc (𝐴 +o 𝑧))
3938fveq2d 5425 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = (𝐺‘suc (𝐴 +o 𝑧)))
40 0zd 9078 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → 0 ∈ ℤ)
41 nnacl 6376 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐴 +o 𝑧) ∈ ω)
4240, 25, 41frec2uzsucd 10186 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘suc (𝐴 +o 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
4339, 42eqtrd 2172 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
44433adant3 1001 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺‘(𝐴 +o 𝑧)) + 1))
45303ad2ant1 1002 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺𝐴) ∈ ℂ)
4628ffvelrni 5554 . . . . . . . . . . 11 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℕ0)
4746nn0cnd 9044 . . . . . . . . . 10 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℂ)
48473ad2ant2 1003 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺𝑧) ∈ ℂ)
49 1cnd 7794 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → 1 ∈ ℂ)
5045, 48, 49addassd 7800 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (((𝐺𝐴) + (𝐺𝑧)) + 1) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
51 oveq1 5781 . . . . . . . . 9 ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺𝐴) + (𝐺𝑧)) + 1))
52513ad2ant3 1004 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = (((𝐺𝐴) + (𝐺𝑧)) + 1))
53 0zd 9078 . . . . . . . . . . 11 (𝑧 ∈ ω → 0 ∈ ℤ)
54 id 19 . . . . . . . . . . 11 (𝑧 ∈ ω → 𝑧 ∈ ω)
5553, 25, 54frec2uzsucd 10186 . . . . . . . . . 10 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
5655oveq2d 5790 . . . . . . . . 9 (𝑧 ∈ ω → ((𝐺𝐴) + (𝐺‘suc 𝑧)) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
57563ad2ant2 1003 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺𝐴) + (𝐺‘suc 𝑧)) = ((𝐺𝐴) + ((𝐺𝑧) + 1)))
5850, 52, 573eqtr4d 2182 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → ((𝐺‘(𝐴 +o 𝑧)) + 1) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
5944, 58eqtrd 2172 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))
60593expia 1183 . . . . 5 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧))))
6160expcom 115 . . . 4 (𝑧 ∈ ω → (𝐴 ∈ ω → ((𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧)) → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
6261a2d 26 . . 3 (𝑧 ∈ ω → ((𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝑧)) = ((𝐺𝐴) + (𝐺𝑧))) → (𝐴 ∈ ω → (𝐺‘(𝐴 +o suc 𝑧)) = ((𝐺𝐴) + (𝐺‘suc 𝑧)))))
636, 12, 18, 24, 37, 62finds 4514 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵))))
6463impcom 124 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐺‘(𝐴 +o 𝐵)) = ((𝐺𝐴) + (𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  c0 3363  cmpt 3989  suc csuc 4287  ωcom 4504  wf 5119  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  freccfrec 6287   +o coa 6310  cc 7630  0cc0 7632  1c1 7633   + caddc 7635  0cn0 8989  cz 9066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-oadd 6317  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339
This theorem is referenced by:  hashun  10563
  Copyright terms: Public domain W3C validator