![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cosmpi | GIF version |
Description: Cosine of a number less π. (Contributed by Paul Chapman, 15-Mar-2008.) |
Ref | Expression |
---|---|
cosmpi | ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | picn 14850 | . . 3 ⊢ π ∈ ℂ | |
2 | cossub 11858 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ π ∈ ℂ) → (cos‘(𝐴 − π)) = (((cos‘𝐴) · (cos‘π)) + ((sin‘𝐴) · (sin‘π)))) | |
3 | 1, 2 | mpan2 425 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = (((cos‘𝐴) · (cos‘π)) + ((sin‘𝐴) · (sin‘π)))) |
4 | cospi 14863 | . . . . . 6 ⊢ (cos‘π) = -1 | |
5 | 4 | oveq2i 5917 | . . . . 5 ⊢ ((cos‘𝐴) · (cos‘π)) = ((cos‘𝐴) · -1) |
6 | coscl 11824 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
7 | neg1cn 9073 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
8 | mulcom 7987 | . . . . . . . 8 ⊢ (((cos‘𝐴) ∈ ℂ ∧ -1 ∈ ℂ) → ((cos‘𝐴) · -1) = (-1 · (cos‘𝐴))) | |
9 | 7, 8 | mpan2 425 | . . . . . . 7 ⊢ ((cos‘𝐴) ∈ ℂ → ((cos‘𝐴) · -1) = (-1 · (cos‘𝐴))) |
10 | mulm1 8405 | . . . . . . 7 ⊢ ((cos‘𝐴) ∈ ℂ → (-1 · (cos‘𝐴)) = -(cos‘𝐴)) | |
11 | 9, 10 | eqtrd 2222 | . . . . . 6 ⊢ ((cos‘𝐴) ∈ ℂ → ((cos‘𝐴) · -1) = -(cos‘𝐴)) |
12 | 6, 11 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · -1) = -(cos‘𝐴)) |
13 | 5, 12 | eqtrid 2234 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (cos‘π)) = -(cos‘𝐴)) |
14 | sinpi 14848 | . . . . . 6 ⊢ (sin‘π) = 0 | |
15 | 14 | oveq2i 5917 | . . . . 5 ⊢ ((sin‘𝐴) · (sin‘π)) = ((sin‘𝐴) · 0) |
16 | sincl 11823 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
17 | 16 | mul01d 8398 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · 0) = 0) |
18 | 15, 17 | eqtrid 2234 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · (sin‘π)) = 0) |
19 | 13, 18 | oveq12d 5924 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘π)) + ((sin‘𝐴) · (sin‘π))) = (-(cos‘𝐴) + 0)) |
20 | 6 | negcld 8303 | . . . 4 ⊢ (𝐴 ∈ ℂ → -(cos‘𝐴) ∈ ℂ) |
21 | 20 | addridd 8154 | . . 3 ⊢ (𝐴 ∈ ℂ → (-(cos‘𝐴) + 0) = -(cos‘𝐴)) |
22 | 19, 21 | eqtrd 2222 | . 2 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴) · (cos‘π)) + ((sin‘𝐴) · (sin‘π))) = -(cos‘𝐴)) |
23 | 3, 22 | eqtrd 2222 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 − π)) = -(cos‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ‘cfv 5242 (class class class)co 5906 ℂcc 7856 0cc0 7858 1c1 7859 + caddc 7861 · cmul 7863 − cmin 8176 -cneg 8177 sincsin 11761 cosccos 11762 πcpi 11764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4140 ax-sep 4143 ax-nul 4151 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-iinf 4612 ax-cnex 7949 ax-resscn 7950 ax-1cn 7951 ax-1re 7952 ax-icn 7953 ax-addcl 7954 ax-addrcl 7955 ax-mulcl 7956 ax-mulrcl 7957 ax-addcom 7958 ax-mulcom 7959 ax-addass 7960 ax-mulass 7961 ax-distr 7962 ax-i2m1 7963 ax-0lt1 7964 ax-1rid 7965 ax-0id 7966 ax-rnegex 7967 ax-precex 7968 ax-cnre 7969 ax-pre-ltirr 7970 ax-pre-ltwlin 7971 ax-pre-lttrn 7972 ax-pre-apti 7973 ax-pre-ltadd 7974 ax-pre-mulgt0 7975 ax-pre-mulext 7976 ax-arch 7977 ax-caucvg 7978 ax-pre-suploc 7979 ax-addf 7980 ax-mulf 7981 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2758 df-sbc 2982 df-csb 3077 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-nul 3443 df-if 3554 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-iun 3910 df-disj 4003 df-br 4026 df-opab 4087 df-mpt 4088 df-tr 4124 df-id 4318 df-po 4321 df-iso 4322 df-iord 4391 df-on 4393 df-ilim 4394 df-suc 4396 df-iom 4615 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-f1 5247 df-fo 5248 df-f1o 5249 df-fv 5250 df-isom 5251 df-riota 5861 df-ov 5909 df-oprab 5910 df-mpo 5911 df-of 6118 df-1st 6180 df-2nd 6181 df-recs 6345 df-irdg 6410 df-frec 6431 df-1o 6456 df-oadd 6460 df-er 6574 df-map 6691 df-pm 6692 df-en 6782 df-dom 6783 df-fin 6784 df-sup 7029 df-inf 7030 df-pnf 8042 df-mnf 8043 df-xr 8044 df-ltxr 8045 df-le 8046 df-sub 8178 df-neg 8179 df-reap 8580 df-ap 8587 df-div 8678 df-inn 8969 df-2 9027 df-3 9028 df-4 9029 df-5 9030 df-6 9031 df-7 9032 df-8 9033 df-9 9034 df-n0 9227 df-z 9304 df-uz 9579 df-q 9671 df-rp 9706 df-xneg 9824 df-xadd 9825 df-ioo 9944 df-ioc 9945 df-ico 9946 df-icc 9947 df-fz 10061 df-fzo 10195 df-seqfrec 10505 df-exp 10584 df-fac 10771 df-bc 10793 df-ihash 10821 df-shft 10933 df-cj 10960 df-re 10961 df-im 10962 df-rsqrt 11116 df-abs 11117 df-clim 11396 df-sumdc 11471 df-ef 11765 df-sin 11767 df-cos 11768 df-pi 11770 df-rest 12826 df-topgen 12845 df-psmet 14003 df-xmet 14004 df-met 14005 df-bl 14006 df-mopn 14007 df-top 14123 df-topon 14136 df-bases 14168 df-ntr 14221 df-cn 14313 df-cnp 14314 df-tx 14378 df-cncf 14683 df-limced 14767 df-dvap 14768 |
This theorem is referenced by: efimpi 14882 ptolemy 14887 |
Copyright terms: Public domain | W3C validator |