| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltaddpos | GIF version | ||
| Description: Adding a positive number to another number increases it. (Contributed by NM, 17-Nov-2004.) |
| Ref | Expression |
|---|---|
| ltaddpos | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8045 | . . 3 ⊢ 0 ∈ ℝ | |
| 2 | ltadd2 8465 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 + 0) < (𝐵 + 𝐴))) | |
| 3 | 1, 2 | mp3an1 1335 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 + 0) < (𝐵 + 𝐴))) |
| 4 | recn 8031 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 5 | 4 | addridd 8194 | . . . 4 ⊢ (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 0) = 𝐵) |
| 7 | 6 | breq1d 4044 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 0) < (𝐵 + 𝐴) ↔ 𝐵 < (𝐵 + 𝐴))) |
| 8 | 3, 7 | bitrd 188 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℝcr 7897 0cc0 7898 + caddc 7901 < clt 8080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8082 df-mnf 8083 df-ltxr 8085 |
| This theorem is referenced by: ltaddpos2 8499 ltsubpos 8500 posdif 8501 ltaddposi 8543 ltaddposd 8575 ltp1 8890 recreclt 8946 ltaddrp 9785 ltoddhalfle 12077 |
| Copyright terms: Public domain | W3C validator |