ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpos GIF version

Theorem ltaddpos 8473
Description: Adding a positive number to another number increases it. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
ltaddpos ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))

Proof of Theorem ltaddpos
StepHypRef Expression
1 0re 8021 . . 3 0 ∈ ℝ
2 ltadd2 8440 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 + 0) < (𝐵 + 𝐴)))
31, 2mp3an1 1335 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 + 0) < (𝐵 + 𝐴)))
4 recn 8007 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
54addridd 8170 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 0) = 𝐵)
65adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + 0) = 𝐵)
76breq1d 4040 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 0) < (𝐵 + 𝐴) ↔ 𝐵 < (𝐵 + 𝐴)))
83, 7bitrd 188 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919  cr 7873  0cc0 7874   + caddc 7877   < clt 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-iota 5216  df-fv 5263  df-ov 5922  df-pnf 8058  df-mnf 8059  df-ltxr 8061
This theorem is referenced by:  ltaddpos2  8474  ltsubpos  8475  posdif  8476  ltaddposi  8518  ltaddposd  8550  ltp1  8865  recreclt  8921  ltaddrp  9760  ltoddhalfle  12037
  Copyright terms: Public domain W3C validator