| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reim0b | GIF version | ||
| Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.) |
| Ref | Expression |
|---|---|
| reim0b | ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reim0 11367 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | |
| 2 | replim 11365 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
| 4 | oveq2 6008 | . . . . . . . 8 ⊢ ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = (i · 0)) | |
| 5 | it0e0 9328 | . . . . . . . 8 ⊢ (i · 0) = 0 | |
| 6 | 4, 5 | eqtrdi 2278 | . . . . . . 7 ⊢ ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = 0) |
| 7 | 6 | oveq2d 6016 | . . . . . 6 ⊢ ((ℑ‘𝐴) = 0 → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0)) |
| 8 | recl 11359 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 9 | 8 | recnd 8171 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
| 10 | 9 | addridd 8291 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴)) |
| 11 | 7, 10 | sylan9eqr 2284 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (ℜ‘𝐴)) |
| 12 | 3, 11 | eqtrd 2262 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = (ℜ‘𝐴)) |
| 13 | 8 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) ∈ ℝ) |
| 14 | 12, 13 | eqeltrd 2306 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℝ) |
| 15 | 14 | ex 115 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ)) |
| 16 | 1, 15 | impbid2 143 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 ℝcr 7994 0cc0 7995 ici 7997 + caddc 7998 · cmul 8000 ℜcre 11346 ℑcim 11347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-2 9165 df-cj 11348 df-re 11349 df-im 11350 |
| This theorem is referenced by: cjreb 11372 reim0bi 11422 reim0bd 11450 absefib 12277 efieq1re 12278 |
| Copyright terms: Public domain | W3C validator |