ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reim0b GIF version

Theorem reim0b 11115
Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
Assertion
Ref Expression
reim0b (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))

Proof of Theorem reim0b
StepHypRef Expression
1 reim0 11114 . 2 (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
2 replim 11112 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
32adantr 276 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4 oveq2 5951 . . . . . . . 8 ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = (i · 0))
5 it0e0 9257 . . . . . . . 8 (i · 0) = 0
64, 5eqtrdi 2253 . . . . . . 7 ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = 0)
76oveq2d 5959 . . . . . 6 ((ℑ‘𝐴) = 0 → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0))
8 recl 11106 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
98recnd 8100 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
109addridd 8220 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
117, 10sylan9eqr 2259 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (ℜ‘𝐴))
123, 11eqtrd 2237 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = (ℜ‘𝐴))
138adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) ∈ ℝ)
1412, 13eqeltrd 2281 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℝ)
1514ex 115 . 2 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ))
161, 15impbid2 143 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924  ici 7926   + caddc 7927   · cmul 7929  cre 11093  cim 11094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-2 9094  df-cj 11095  df-re 11096  df-im 11097
This theorem is referenced by:  cjreb  11119  reim0bi  11169  reim0bd  11197  absefib  12024  efieq1re  12025
  Copyright terms: Public domain W3C validator