![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reim0b | GIF version |
Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.) |
Ref | Expression |
---|---|
reim0b | โข (๐ด โ โ โ (๐ด โ โ โ (โโ๐ด) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reim0 10872 | . 2 โข (๐ด โ โ โ (โโ๐ด) = 0) | |
2 | replim 10870 | . . . . . 6 โข (๐ด โ โ โ ๐ด = ((โโ๐ด) + (i ยท (โโ๐ด)))) | |
3 | 2 | adantr 276 | . . . . 5 โข ((๐ด โ โ โง (โโ๐ด) = 0) โ ๐ด = ((โโ๐ด) + (i ยท (โโ๐ด)))) |
4 | oveq2 5885 | . . . . . . . 8 โข ((โโ๐ด) = 0 โ (i ยท (โโ๐ด)) = (i ยท 0)) | |
5 | it0e0 9142 | . . . . . . . 8 โข (i ยท 0) = 0 | |
6 | 4, 5 | eqtrdi 2226 | . . . . . . 7 โข ((โโ๐ด) = 0 โ (i ยท (โโ๐ด)) = 0) |
7 | 6 | oveq2d 5893 | . . . . . 6 โข ((โโ๐ด) = 0 โ ((โโ๐ด) + (i ยท (โโ๐ด))) = ((โโ๐ด) + 0)) |
8 | recl 10864 | . . . . . . . 8 โข (๐ด โ โ โ (โโ๐ด) โ โ) | |
9 | 8 | recnd 7988 | . . . . . . 7 โข (๐ด โ โ โ (โโ๐ด) โ โ) |
10 | 9 | addid1d 8108 | . . . . . 6 โข (๐ด โ โ โ ((โโ๐ด) + 0) = (โโ๐ด)) |
11 | 7, 10 | sylan9eqr 2232 | . . . . 5 โข ((๐ด โ โ โง (โโ๐ด) = 0) โ ((โโ๐ด) + (i ยท (โโ๐ด))) = (โโ๐ด)) |
12 | 3, 11 | eqtrd 2210 | . . . 4 โข ((๐ด โ โ โง (โโ๐ด) = 0) โ ๐ด = (โโ๐ด)) |
13 | 8 | adantr 276 | . . . 4 โข ((๐ด โ โ โง (โโ๐ด) = 0) โ (โโ๐ด) โ โ) |
14 | 12, 13 | eqeltrd 2254 | . . 3 โข ((๐ด โ โ โง (โโ๐ด) = 0) โ ๐ด โ โ) |
15 | 14 | ex 115 | . 2 โข (๐ด โ โ โ ((โโ๐ด) = 0 โ ๐ด โ โ)) |
16 | 1, 15 | impbid2 143 | 1 โข (๐ด โ โ โ (๐ด โ โ โ (โโ๐ด) = 0)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 = wceq 1353 โ wcel 2148 โcfv 5218 (class class class)co 5877 โcc 7811 โcr 7812 0cc0 7813 ici 7815 + caddc 7816 ยท cmul 7818 โcre 10851 โcim 10852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-2 8980 df-cj 10853 df-re 10854 df-im 10855 |
This theorem is referenced by: cjreb 10877 reim0bi 10927 reim0bd 10955 absefib 11780 efieq1re 11781 |
Copyright terms: Public domain | W3C validator |