Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reim0b | GIF version |
Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.) |
Ref | Expression |
---|---|
reim0b | ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reim0 10825 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | |
2 | replim 10823 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
3 | 2 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
4 | oveq2 5861 | . . . . . . . 8 ⊢ ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = (i · 0)) | |
5 | it0e0 9099 | . . . . . . . 8 ⊢ (i · 0) = 0 | |
6 | 4, 5 | eqtrdi 2219 | . . . . . . 7 ⊢ ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = 0) |
7 | 6 | oveq2d 5869 | . . . . . 6 ⊢ ((ℑ‘𝐴) = 0 → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0)) |
8 | recl 10817 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
9 | 8 | recnd 7948 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
10 | 9 | addid1d 8068 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴)) |
11 | 7, 10 | sylan9eqr 2225 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (ℜ‘𝐴)) |
12 | 3, 11 | eqtrd 2203 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = (ℜ‘𝐴)) |
13 | 8 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) ∈ ℝ) |
14 | 12, 13 | eqeltrd 2247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℝ) |
15 | 14 | ex 114 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ)) |
16 | 1, 15 | impbid2 142 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 ici 7776 + caddc 7777 · cmul 7779 ℜcre 10804 ℑcim 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-2 8937 df-cj 10806 df-re 10807 df-im 10808 |
This theorem is referenced by: cjreb 10830 reim0bi 10880 reim0bd 10908 absefib 11733 efieq1re 11734 |
Copyright terms: Public domain | W3C validator |