Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnge1 | GIF version |
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
nnge1 | ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3986 | . 2 ⊢ (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1)) | |
2 | breq2 3986 | . 2 ⊢ (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦)) | |
3 | breq2 3986 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1))) | |
4 | breq2 3986 | . 2 ⊢ (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴)) | |
5 | 1le1 8470 | . 2 ⊢ 1 ≤ 1 | |
6 | nnre 8864 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
7 | recn 7886 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
8 | 7 | addid1d 8047 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦) |
9 | 8 | breq2d 3994 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦)) |
10 | 0lt1 8025 | . . . . . . . 8 ⊢ 0 < 1 | |
11 | 0re 7899 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
12 | 1re 7898 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
13 | axltadd 7968 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) | |
14 | 11, 12, 13 | mp3an12 1317 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) |
15 | 10, 14 | mpi 15 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1)) |
16 | readdcl 7879 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ) | |
17 | 11, 16 | mpan2 422 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ) |
18 | peano2re 8034 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ) | |
19 | lttr 7972 | . . . . . . . . 9 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) | |
20 | 12, 19 | mp3an3 1316 | . . . . . . . 8 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
21 | 17, 18, 20 | syl2anc 409 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
22 | 15, 21 | mpand 426 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1)) |
23 | 22 | con3d 621 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1)) |
24 | lenlt 7974 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) | |
25 | 12, 17, 24 | sylancr 411 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) |
26 | lenlt 7974 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) | |
27 | 12, 18, 26 | sylancr 411 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) |
28 | 23, 25, 27 | 3imtr4d 202 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1))) |
29 | 9, 28 | sylbird 169 | . . 3 ⊢ (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
30 | 6, 29 | syl 14 | . 2 ⊢ (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
31 | 1, 2, 3, 4, 5, 30 | nnind 8873 | 1 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 ℕcn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-inn 8858 |
This theorem is referenced by: nnle1eq1 8881 nngt0 8882 nnnlt1 8883 nnrecgt0 8895 nnge1d 8900 elnnnn0c 9159 elnnz1 9214 zltp1le 9245 nn0ledivnn 9703 elfz1b 10025 fzo1fzo0n0 10118 elfzom1elp1fzo 10137 fzo0sn0fzo1 10156 nnlesq 10558 faclbnd 10654 faclbnd3 10656 cvgratz 11473 coprmgcdb 12020 isprm3 12050 pw2dvds 12098 pockthg 12287 oddennn 12325 |
Copyright terms: Public domain | W3C validator |