| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1 | GIF version | ||
| Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnge1 | ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4086 | . 2 ⊢ (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1)) | |
| 2 | breq2 4086 | . 2 ⊢ (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦)) | |
| 3 | breq2 4086 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1))) | |
| 4 | breq2 4086 | . 2 ⊢ (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴)) | |
| 5 | 1le1 8715 | . 2 ⊢ 1 ≤ 1 | |
| 6 | nnre 9113 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 7 | recn 8128 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 8 | 7 | addridd 8291 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦) |
| 9 | 8 | breq2d 4094 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦)) |
| 10 | 0lt1 8269 | . . . . . . . 8 ⊢ 0 < 1 | |
| 11 | 0re 8142 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 12 | 1re 8141 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 13 | axltadd 8212 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) | |
| 14 | 11, 12, 13 | mp3an12 1361 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) |
| 15 | 10, 14 | mpi 15 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1)) |
| 16 | readdcl 8121 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ) | |
| 17 | 11, 16 | mpan2 425 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ) |
| 18 | peano2re 8278 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ) | |
| 19 | lttr 8216 | . . . . . . . . 9 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) | |
| 20 | 12, 19 | mp3an3 1360 | . . . . . . . 8 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
| 21 | 17, 18, 20 | syl2anc 411 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
| 22 | 15, 21 | mpand 429 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1)) |
| 23 | 22 | con3d 634 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1)) |
| 24 | lenlt 8218 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) | |
| 25 | 12, 17, 24 | sylancr 414 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) |
| 26 | lenlt 8218 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) | |
| 27 | 12, 18, 26 | sylancr 414 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) |
| 28 | 23, 25, 27 | 3imtr4d 203 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1))) |
| 29 | 9, 28 | sylbird 170 | . . 3 ⊢ (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
| 30 | 6, 29 | syl 14 | . 2 ⊢ (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
| 31 | 1, 2, 3, 4, 5, 30 | nnind 9122 | 1 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℝcr 7994 0cc0 7995 1c1 7996 + caddc 7998 < clt 8177 ≤ cle 8178 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-inn 9107 |
| This theorem is referenced by: nnle1eq1 9130 nngt0 9131 nnnlt1 9132 nnrecgt0 9144 nnge1d 9149 elnnnn0c 9410 elnnz1 9465 zltp1le 9497 nn0ledivnn 9959 elfz1b 10282 fzo1fzo0n0 10379 elfzom1elp1fzo 10403 fzo0sn0fzo1 10422 nnlesq 10860 faclbnd 10958 faclbnd3 10960 len0nnbi 11101 fstwrdne0 11106 cvgratz 12038 coprmgcdb 12605 isprm3 12635 pw2dvds 12683 pockthg 12875 oddennn 12958 gausslemma2dlem1a 15731 |
| Copyright terms: Public domain | W3C validator |