![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnge1 | GIF version |
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
nnge1 | ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4033 | . 2 ⊢ (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1)) | |
2 | breq2 4033 | . 2 ⊢ (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦)) | |
3 | breq2 4033 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1))) | |
4 | breq2 4033 | . 2 ⊢ (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴)) | |
5 | 1le1 8591 | . 2 ⊢ 1 ≤ 1 | |
6 | nnre 8989 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
7 | recn 8005 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
8 | 7 | addridd 8168 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦) |
9 | 8 | breq2d 4041 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦)) |
10 | 0lt1 8146 | . . . . . . . 8 ⊢ 0 < 1 | |
11 | 0re 8019 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
12 | 1re 8018 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
13 | axltadd 8089 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) | |
14 | 11, 12, 13 | mp3an12 1338 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) |
15 | 10, 14 | mpi 15 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1)) |
16 | readdcl 7998 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ) | |
17 | 11, 16 | mpan2 425 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ) |
18 | peano2re 8155 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ) | |
19 | lttr 8093 | . . . . . . . . 9 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) | |
20 | 12, 19 | mp3an3 1337 | . . . . . . . 8 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
21 | 17, 18, 20 | syl2anc 411 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
22 | 15, 21 | mpand 429 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1)) |
23 | 22 | con3d 632 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1)) |
24 | lenlt 8095 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) | |
25 | 12, 17, 24 | sylancr 414 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) |
26 | lenlt 8095 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) | |
27 | 12, 18, 26 | sylancr 414 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) |
28 | 23, 25, 27 | 3imtr4d 203 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1))) |
29 | 9, 28 | sylbird 170 | . . 3 ⊢ (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
30 | 6, 29 | syl 14 | . 2 ⊢ (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
31 | 1, 2, 3, 4, 5, 30 | nnind 8998 | 1 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 < clt 8054 ≤ cle 8055 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 |
This theorem is referenced by: nnle1eq1 9006 nngt0 9007 nnnlt1 9008 nnrecgt0 9020 nnge1d 9025 elnnnn0c 9285 elnnz1 9340 zltp1le 9371 nn0ledivnn 9833 elfz1b 10156 fzo1fzo0n0 10250 elfzom1elp1fzo 10269 fzo0sn0fzo1 10288 nnlesq 10714 faclbnd 10812 faclbnd3 10814 len0nnbi 10948 fstwrdne0 10953 cvgratz 11675 coprmgcdb 12226 isprm3 12256 pw2dvds 12304 pockthg 12495 oddennn 12549 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |