![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnge1 | GIF version |
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
Ref | Expression |
---|---|
nnge1 | ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4008 | . 2 ⊢ (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1)) | |
2 | breq2 4008 | . 2 ⊢ (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦)) | |
3 | breq2 4008 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1))) | |
4 | breq2 4008 | . 2 ⊢ (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴)) | |
5 | 1le1 8529 | . 2 ⊢ 1 ≤ 1 | |
6 | nnre 8926 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
7 | recn 7944 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
8 | 7 | addid1d 8106 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦) |
9 | 8 | breq2d 4016 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦)) |
10 | 0lt1 8084 | . . . . . . . 8 ⊢ 0 < 1 | |
11 | 0re 7957 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
12 | 1re 7956 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
13 | axltadd 8027 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) | |
14 | 11, 12, 13 | mp3an12 1327 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) |
15 | 10, 14 | mpi 15 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1)) |
16 | readdcl 7937 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ) | |
17 | 11, 16 | mpan2 425 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ) |
18 | peano2re 8093 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ) | |
19 | lttr 8031 | . . . . . . . . 9 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) | |
20 | 12, 19 | mp3an3 1326 | . . . . . . . 8 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
21 | 17, 18, 20 | syl2anc 411 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
22 | 15, 21 | mpand 429 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1)) |
23 | 22 | con3d 631 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1)) |
24 | lenlt 8033 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) | |
25 | 12, 17, 24 | sylancr 414 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) |
26 | lenlt 8033 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) | |
27 | 12, 18, 26 | sylancr 414 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) |
28 | 23, 25, 27 | 3imtr4d 203 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1))) |
29 | 9, 28 | sylbird 170 | . . 3 ⊢ (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
30 | 6, 29 | syl 14 | . 2 ⊢ (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
31 | 1, 2, 3, 4, 5, 30 | nnind 8935 | 1 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 class class class wbr 4004 (class class class)co 5875 ℝcr 7810 0cc0 7811 1c1 7812 + caddc 7814 < clt 7992 ≤ cle 7993 ℕcn 8919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addrcl 7908 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-pre-ltirr 7923 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-xp 4633 df-cnv 4635 df-iota 5179 df-fv 5225 df-ov 5878 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-inn 8920 |
This theorem is referenced by: nnle1eq1 8943 nngt0 8944 nnnlt1 8945 nnrecgt0 8957 nnge1d 8962 elnnnn0c 9221 elnnz1 9276 zltp1le 9307 nn0ledivnn 9767 elfz1b 10090 fzo1fzo0n0 10183 elfzom1elp1fzo 10202 fzo0sn0fzo1 10221 nnlesq 10624 faclbnd 10721 faclbnd3 10723 cvgratz 11540 coprmgcdb 12088 isprm3 12118 pw2dvds 12166 pockthg 12355 oddennn 12393 |
Copyright terms: Public domain | W3C validator |