| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1 | GIF version | ||
| Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| nnge1 | ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4055 | . 2 ⊢ (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1)) | |
| 2 | breq2 4055 | . 2 ⊢ (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦)) | |
| 3 | breq2 4055 | . 2 ⊢ (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1))) | |
| 4 | breq2 4055 | . 2 ⊢ (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴)) | |
| 5 | 1le1 8665 | . 2 ⊢ 1 ≤ 1 | |
| 6 | nnre 9063 | . . 3 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 7 | recn 8078 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 8 | 7 | addridd 8241 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦) |
| 9 | 8 | breq2d 4063 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦)) |
| 10 | 0lt1 8219 | . . . . . . . 8 ⊢ 0 < 1 | |
| 11 | 0re 8092 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 12 | 1re 8091 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 13 | axltadd 8162 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) | |
| 14 | 11, 12, 13 | mp3an12 1340 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1))) |
| 15 | 10, 14 | mpi 15 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1)) |
| 16 | readdcl 8071 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ) | |
| 17 | 11, 16 | mpan2 425 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ) |
| 18 | peano2re 8228 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ) | |
| 19 | lttr 8166 | . . . . . . . . 9 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) | |
| 20 | 12, 19 | mp3an3 1339 | . . . . . . . 8 ⊢ (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
| 21 | 17, 18, 20 | syl2anc 411 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
| 22 | 15, 21 | mpand 429 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1)) |
| 23 | 22 | con3d 632 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1)) |
| 24 | lenlt 8168 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) | |
| 25 | 12, 17, 24 | sylancr 414 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) |
| 26 | lenlt 8168 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) | |
| 27 | 12, 18, 26 | sylancr 414 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) |
| 28 | 23, 25, 27 | 3imtr4d 203 | . . . 4 ⊢ (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1))) |
| 29 | 9, 28 | sylbird 170 | . . 3 ⊢ (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
| 30 | 6, 29 | syl 14 | . 2 ⊢ (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1))) |
| 31 | 1, 2, 3, 4, 5, 30 | nnind 9072 | 1 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 class class class wbr 4051 (class class class)co 5957 ℝcr 7944 0cc0 7945 1c1 7946 + caddc 7948 < clt 8127 ≤ cle 8128 ℕcn 9056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-iota 5241 df-fv 5288 df-ov 5960 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-inn 9057 |
| This theorem is referenced by: nnle1eq1 9080 nngt0 9081 nnnlt1 9082 nnrecgt0 9094 nnge1d 9099 elnnnn0c 9360 elnnz1 9415 zltp1le 9447 nn0ledivnn 9909 elfz1b 10232 fzo1fzo0n0 10329 elfzom1elp1fzo 10353 fzo0sn0fzo1 10372 nnlesq 10810 faclbnd 10908 faclbnd3 10910 len0nnbi 11050 fstwrdne0 11055 cvgratz 11918 coprmgcdb 12485 isprm3 12515 pw2dvds 12563 pockthg 12755 oddennn 12838 gausslemma2dlem1a 15610 |
| Copyright terms: Public domain | W3C validator |