ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1 GIF version

Theorem nnge1 9032
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnge1 (𝐴 ∈ ℕ → 1 ≤ 𝐴)

Proof of Theorem nnge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4038 . 2 (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1))
2 breq2 4038 . 2 (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦))
3 breq2 4038 . 2 (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1)))
4 breq2 4038 . 2 (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴))
5 1le1 8618 . 2 1 ≤ 1
6 nnre 9016 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7 recn 8031 . . . . . 6 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
87addridd 8194 . . . . 5 (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦)
98breq2d 4046 . . . 4 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦))
10 0lt1 8172 . . . . . . . 8 0 < 1
11 0re 8045 . . . . . . . . 9 0 ∈ ℝ
12 1re 8044 . . . . . . . . 9 1 ∈ ℝ
13 axltadd 8115 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1)))
1411, 12, 13mp3an12 1338 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1)))
1510, 14mpi 15 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1))
16 readdcl 8024 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ)
1711, 16mpan2 425 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ)
18 peano2re 8181 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
19 lttr 8119 . . . . . . . . 9 (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2012, 19mp3an3 1337 . . . . . . . 8 (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2117, 18, 20syl2anc 411 . . . . . . 7 (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2215, 21mpand 429 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1))
2322con3d 632 . . . . 5 (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1))
24 lenlt 8121 . . . . . 6 ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1))
2512, 17, 24sylancr 414 . . . . 5 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1))
26 lenlt 8121 . . . . . 6 ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1))
2712, 18, 26sylancr 414 . . . . 5 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1))
2823, 25, 273imtr4d 203 . . . 4 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1)))
299, 28sylbird 170 . . 3 (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1)))
306, 29syl 14 . 2 (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1)))
311, 2, 3, 4, 5, 30nnind 9025 1 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   < clt 8080  cle 8081  cn 9009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-iota 5220  df-fv 5267  df-ov 5928  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-inn 9010
This theorem is referenced by:  nnle1eq1  9033  nngt0  9034  nnnlt1  9035  nnrecgt0  9047  nnge1d  9052  elnnnn0c  9313  elnnz1  9368  zltp1le  9399  nn0ledivnn  9861  elfz1b  10184  fzo1fzo0n0  10278  elfzom1elp1fzo  10297  fzo0sn0fzo1  10316  nnlesq  10754  faclbnd  10852  faclbnd3  10854  len0nnbi  10988  fstwrdne0  10993  cvgratz  11716  coprmgcdb  12283  isprm3  12313  pw2dvds  12361  pockthg  12553  oddennn  12636  gausslemma2dlem1a  15407
  Copyright terms: Public domain W3C validator