ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1 GIF version

Theorem nnge1 8766
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnge1 (𝐴 ∈ ℕ → 1 ≤ 𝐴)

Proof of Theorem nnge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3940 . 2 (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1))
2 breq2 3940 . 2 (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦))
3 breq2 3940 . 2 (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1)))
4 breq2 3940 . 2 (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴))
5 1le1 8357 . 2 1 ≤ 1
6 nnre 8750 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7 recn 7776 . . . . . 6 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
87addid1d 7934 . . . . 5 (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦)
98breq2d 3948 . . . 4 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦))
10 0lt1 7912 . . . . . . . 8 0 < 1
11 0re 7789 . . . . . . . . 9 0 ∈ ℝ
12 1re 7788 . . . . . . . . 9 1 ∈ ℝ
13 axltadd 7857 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1)))
1411, 12, 13mp3an12 1306 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1)))
1510, 14mpi 15 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1))
16 readdcl 7769 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ)
1711, 16mpan2 422 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ)
18 peano2re 7921 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
19 lttr 7861 . . . . . . . . 9 (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2012, 19mp3an3 1305 . . . . . . . 8 (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2117, 18, 20syl2anc 409 . . . . . . 7 (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2215, 21mpand 426 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1))
2322con3d 621 . . . . 5 (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1))
24 lenlt 7863 . . . . . 6 ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1))
2512, 17, 24sylancr 411 . . . . 5 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1))
26 lenlt 7863 . . . . . 6 ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1))
2712, 18, 26sylancr 411 . . . . 5 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1))
2823, 25, 273imtr4d 202 . . . 4 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1)))
299, 28sylbird 169 . . 3 (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1)))
306, 29syl 14 . 2 (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1)))
311, 2, 3, 4, 5, 30nnind 8759 1 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1481   class class class wbr 3936  (class class class)co 5781  cr 7642  0cc0 7643  1c1 7644   + caddc 7646   < clt 7823  cle 7824  cn 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1re 7737  ax-addrcl 7740  ax-0lt1 7749  ax-0id 7751  ax-rnegex 7752  ax-pre-ltirr 7755  ax-pre-lttrn 7757  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-xp 4552  df-cnv 4554  df-iota 5095  df-fv 5138  df-ov 5784  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-inn 8744
This theorem is referenced by:  nnle1eq1  8767  nngt0  8768  nnnlt1  8769  nnrecgt0  8781  nnge1d  8786  elnnnn0c  9045  elnnz1  9100  zltp1le  9131  nn0ledivnn  9583  elfz1b  9900  fzo1fzo0n0  9990  elfzom1elp1fzo  10009  fzo0sn0fzo1  10028  nnlesq  10426  faclbnd  10518  faclbnd3  10520  cvgratz  11332  coprmgcdb  11803  isprm3  11833  pw2dvds  11878  oddennn  11939
  Copyright terms: Public domain W3C validator