ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereb GIF version

Theorem rereb 10642
Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
Assertion
Ref Expression
rereb (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))

Proof of Theorem rereb
StepHypRef Expression
1 replim 10638 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21adantr 274 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
3 reim0 10640 . . . . . . 7 (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
43oveq2d 5790 . . . . . 6 (𝐴 ∈ ℝ → (i · (ℑ‘𝐴)) = (i · 0))
5 it0e0 8948 . . . . . 6 (i · 0) = 0
64, 5syl6eq 2188 . . . . 5 (𝐴 ∈ ℝ → (i · (ℑ‘𝐴)) = 0)
76adantl 275 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → (i · (ℑ‘𝐴)) = 0)
87oveq2d 5790 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0))
9 recl 10632 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
109recnd 7801 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
1110addid1d 7918 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
1211adantr 274 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
132, 8, 123eqtrrd 2177 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → (ℜ‘𝐴) = 𝐴)
14 simpr 109 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → (ℜ‘𝐴) = 𝐴)
159adantr 274 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → (ℜ‘𝐴) ∈ ℝ)
1614, 15eqeltrrd 2217 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → 𝐴 ∈ ℝ)
1713, 16impbida 585 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  cfv 5123  (class class class)co 5774  cc 7625  cr 7626  0cc0 7627  ici 7629   + caddc 7630   · cmul 7632  cre 10619  cim 10620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-2 8786  df-cj 10621  df-re 10622  df-im 10623
This theorem is referenced by:  mulreap  10643  rere  10644  rerebi  10696  rerebd  10724  rennim  10781
  Copyright terms: Public domain W3C validator