| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addge01 | GIF version | ||
| Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.) |
| Ref | Expression |
|---|---|
| addge01 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8079 | . . . 4 ⊢ 0 ∈ ℝ | |
| 2 | leadd2 8511 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 + 0) ≤ (𝐴 + 𝐵))) | |
| 3 | 1, 2 | mp3an1 1337 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 + 0) ≤ (𝐴 + 𝐵))) |
| 4 | 3 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 + 0) ≤ (𝐴 + 𝐵))) |
| 5 | recn 8065 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 6 | 5 | addridd 8228 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) |
| 7 | 6 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 0) = 𝐴) |
| 8 | 7 | breq1d 4057 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 0) ≤ (𝐴 + 𝐵) ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
| 9 | 4, 8 | bitrd 188 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℝcr 7931 0cc0 7932 + caddc 7935 ≤ cle 8115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0id 8040 ax-rnegex 8041 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-xp 4685 df-cnv 4687 df-iota 5237 df-fv 5284 df-ov 5954 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 |
| This theorem is referenced by: addge02 8553 subge02 8558 addge01d 8613 nn0addge1 9348 elfzmlbp 10261 flqbi2 10441 |
| Copyright terms: Public domain | W3C validator |