Step | Hyp | Ref
| Expression |
1 | | eqid 2170 |
. . 3
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
2 | | geolim2.3 |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
3 | 2 | nn0zd 9325 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | | geolim2.4 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐴↑𝑘)) |
5 | | geolim.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | 5 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
7 | | eluznn0 9551 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) |
8 | 2, 7 | sylan 281 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) |
9 | 6, 8 | expcld 10602 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑘) ∈ ℂ) |
10 | | eluzelz 9489 |
. . . . . . . . 9
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) |
11 | 10 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ ℤ) |
12 | | 0red 7914 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 0 ∈
ℝ) |
13 | 3 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) |
14 | 13 | zred 9327 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℝ) |
15 | 11 | zred 9327 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ ℝ) |
16 | 2 | nn0ge0d 9184 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝑀) |
17 | 16 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 0 ≤ 𝑀) |
18 | | eluzle 9492 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑥) |
19 | 18 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑀 ≤ 𝑥) |
20 | 12, 14, 15, 17, 19 | letrd 8036 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 0 ≤ 𝑥) |
21 | | elnn0z 9218 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ0
↔ (𝑥 ∈ ℤ
∧ 0 ≤ 𝑥)) |
22 | 11, 20, 21 | sylanbrc 415 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ ℕ0) |
23 | 5 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ) |
24 | 23, 22 | expcld 10602 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑥) ∈ ℂ) |
25 | | oveq2 5859 |
. . . . . . . 8
⊢ (𝑛 = 𝑥 → (𝐴↑𝑛) = (𝐴↑𝑥)) |
26 | | eqid 2170 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
27 | 25, 26 | fvmptg 5570 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0
∧ (𝐴↑𝑥) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑥) = (𝐴↑𝑥)) |
28 | 22, 24, 27 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑥) = (𝐴↑𝑥)) |
29 | 28, 24 | eqeltrd 2247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑥) ∈ ℂ) |
30 | | oveq2 5859 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
31 | 30, 26 | fvmptg 5570 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
32 | 8, 9, 31 | syl2anc 409 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
33 | 32, 4 | eqtr4d 2206 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐹‘𝑘)) |
34 | | addcl 7892 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
35 | 34 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
36 | 3, 29, 33, 35 | seq3feq 10421 |
. . . 4
⊢ (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) = seq𝑀( + , 𝐹)) |
37 | | seqex 10396 |
. . . . . 6
⊢ seq0( + ,
(𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))) ∈ V |
38 | | ax-1cn 7860 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
39 | | subcl 8111 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
40 | 38, 5, 39 | sylancr 412 |
. . . . . . 7
⊢ (𝜑 → (1 − 𝐴) ∈
ℂ) |
41 | | 1cnd 7929 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
42 | | 1red 7928 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
43 | | geolim.2 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘𝐴) < 1) |
44 | 5, 42, 43 | absltap 11465 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 # 1) |
45 | | apsym 8518 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 # 1
↔ 1 # 𝐴)) |
46 | 5, 41, 45 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴)) |
47 | 44, 46 | mpbid 146 |
. . . . . . . 8
⊢ (𝜑 → 1 # 𝐴) |
48 | 41, 5, 47 | subap0d 8556 |
. . . . . . 7
⊢ (𝜑 → (1 − 𝐴) # 0) |
49 | 40, 48 | recclapd 8691 |
. . . . . 6
⊢ (𝜑 → (1 / (1 − 𝐴)) ∈
ℂ) |
50 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
ℕ0) |
51 | 5 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
52 | 51, 50 | expcld 10602 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑𝑗) ∈ ℂ) |
53 | | oveq2 5859 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (𝐴↑𝑛) = (𝐴↑𝑗)) |
54 | 53, 26 | fvmptg 5570 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℕ0
∧ (𝐴↑𝑗) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑗) = (𝐴↑𝑗)) |
55 | 50, 52, 54 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑗) = (𝐴↑𝑗)) |
56 | 5, 43, 55 | geolim 11467 |
. . . . . 6
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))) ⇝ (1 / (1 −
𝐴))) |
57 | | breldmg 4815 |
. . . . . 6
⊢ ((seq0( +
, (𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))) ∈ V ∧ (1 / (1 − 𝐴)) ∈ ℂ ∧ seq0( +
, (𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
58 | 37, 49, 56, 57 | mp3an2i 1337 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))) ∈ dom ⇝
) |
59 | | nn0uz 9514 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
60 | | expcl 10487 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (𝐴↑𝑗) ∈
ℂ) |
61 | 5, 60 | sylan 281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴↑𝑗) ∈ ℂ) |
62 | 55, 61 | eqeltrd 2247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑗) ∈ ℂ) |
63 | 59, 2, 62 | iserex 11295 |
. . . . 5
⊢ (𝜑 → (seq0( + , (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))) ∈ dom ⇝ ↔
seq𝑀( + , (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))) ∈ dom ⇝
)) |
64 | 58, 63 | mpbid 146 |
. . . 4
⊢ (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
65 | 36, 64 | eqeltrrd 2248 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
66 | 1, 3, 4, 9, 65 | isumclim2 11378 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘)) |
67 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
68 | 5 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈
ℂ) |
69 | 68, 67 | expcld 10602 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
70 | 67, 69, 31 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
71 | | expcl 10487 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
72 | 5, 71 | sylan 281 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
73 | 59, 1, 2, 70, 72, 58 | isumsplit 11447 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴↑𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘))) |
74 | | 0zd 9217 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
75 | 59, 74, 70, 72, 56 | isumclim 11377 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) |
76 | 73, 75 | eqtr3d 2205 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴↑𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘)) = (1 / (1 − 𝐴))) |
77 | 5, 44, 2 | geoserap 11463 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑀)) / (1 − 𝐴))) |
78 | 77 | oveq1d 5866 |
. . . . 5
⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴↑𝑘) + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘)) = (((1 − (𝐴↑𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘))) |
79 | 76, 78 | eqtr3d 2205 |
. . . 4
⊢ (𝜑 → (1 / (1 − 𝐴)) = (((1 − (𝐴↑𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘))) |
80 | 79 | oveq1d 5866 |
. . 3
⊢ (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴↑𝑀)) / (1 − 𝐴))) = ((((1 − (𝐴↑𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘)) − ((1 − (𝐴↑𝑀)) / (1 − 𝐴)))) |
81 | 5, 2 | expcld 10602 |
. . . . . 6
⊢ (𝜑 → (𝐴↑𝑀) ∈ ℂ) |
82 | | subcl 8111 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ (𝐴↑𝑀) ∈ ℂ) → (1 − (𝐴↑𝑀)) ∈ ℂ) |
83 | 38, 81, 82 | sylancr 412 |
. . . . 5
⊢ (𝜑 → (1 − (𝐴↑𝑀)) ∈ ℂ) |
84 | 41, 83, 40, 48 | divsubdirapd 8740 |
. . . 4
⊢ (𝜑 → ((1 − (1 −
(𝐴↑𝑀))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((1 − (𝐴↑𝑀)) / (1 − 𝐴)))) |
85 | | nncan 8141 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ (𝐴↑𝑀) ∈ ℂ) → (1 − (1
− (𝐴↑𝑀))) = (𝐴↑𝑀)) |
86 | 38, 81, 85 | sylancr 412 |
. . . . 5
⊢ (𝜑 → (1 − (1 −
(𝐴↑𝑀))) = (𝐴↑𝑀)) |
87 | 86 | oveq1d 5866 |
. . . 4
⊢ (𝜑 → ((1 − (1 −
(𝐴↑𝑀))) / (1 − 𝐴)) = ((𝐴↑𝑀) / (1 − 𝐴))) |
88 | 84, 87 | eqtr3d 2205 |
. . 3
⊢ (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴↑𝑀)) / (1 − 𝐴))) = ((𝐴↑𝑀) / (1 − 𝐴))) |
89 | 83, 40, 48 | divclapd 8700 |
. . . 4
⊢ (𝜑 → ((1 − (𝐴↑𝑀)) / (1 − 𝐴)) ∈ ℂ) |
90 | 1, 3, 32, 9, 64 | isumcl 11381 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘) ∈ ℂ) |
91 | 89, 90 | pncan2d 8225 |
. . 3
⊢ (𝜑 → ((((1 − (𝐴↑𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘)) − ((1 − (𝐴↑𝑀)) / (1 − 𝐴))) = Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘)) |
92 | 80, 88, 91 | 3eqtr3rd 2212 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐴↑𝑘) = ((𝐴↑𝑀) / (1 − 𝐴))) |
93 | 66, 92 | breqtrd 4013 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴↑𝑀) / (1 − 𝐴))) |