ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim2 GIF version

Theorem geolim2 11249
Description: The partial sums in the geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim2.3 (𝜑𝑀 ∈ ℕ0)
geolim2.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim2 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘

Proof of Theorem geolim2
Dummy variables 𝑗 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2117 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 geolim2.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
32nn0zd 9139 . . 3 (𝜑𝑀 ∈ ℤ)
4 geolim2.4 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
5 geolim.1 . . . . 5 (𝜑𝐴 ∈ ℂ)
65adantr 274 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
7 eluznn0 9361 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
82, 7sylan 281 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
96, 8expcld 10392 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴𝑘) ∈ ℂ)
10 eluzelz 9303 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
1110adantl 275 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
12 0red 7735 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
133adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
1413zred 9141 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1511zred 9141 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
162nn0ge0d 9001 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
1716adantr 274 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ≤ 𝑀)
18 eluzle 9306 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
1918adantl 275 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
2012, 14, 15, 17, 19letrd 7854 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ≤ 𝑥)
21 elnn0z 9035 . . . . . . . 8 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
2211, 20, 21sylanbrc 413 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℕ0)
235adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
2423, 22expcld 10392 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐴𝑥) ∈ ℂ)
25 oveq2 5750 . . . . . . . 8 (𝑛 = 𝑥 → (𝐴𝑛) = (𝐴𝑥))
26 eqid 2117 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
2725, 26fvmptg 5465 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝐴𝑥) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) = (𝐴𝑥))
2822, 24, 27syl2anc 408 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) = (𝐴𝑥))
2928, 24eqeltrd 2194 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) ∈ ℂ)
30 oveq2 5750 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
3130, 26fvmptg 5465 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
328, 9, 31syl2anc 408 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3332, 4eqtr4d 2153 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐹𝑘))
34 addcl 7713 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3534adantl 275 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
363, 29, 33, 35seq3feq 10213 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) = seq𝑀( + , 𝐹))
37 seqex 10188 . . . . . 6 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
38 ax-1cn 7681 . . . . . . . 8 1 ∈ ℂ
39 subcl 7929 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
4038, 5, 39sylancr 410 . . . . . . 7 (𝜑 → (1 − 𝐴) ∈ ℂ)
41 1cnd 7750 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
42 1red 7749 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
43 geolim.2 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) < 1)
445, 42, 43absltap 11246 . . . . . . . . 9 (𝜑𝐴 # 1)
45 apsym 8336 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ 1 # 𝐴))
465, 41, 45syl2anc 408 . . . . . . . . 9 (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴))
4744, 46mpbid 146 . . . . . . . 8 (𝜑 → 1 # 𝐴)
4841, 5, 47subap0d 8374 . . . . . . 7 (𝜑 → (1 − 𝐴) # 0)
4940, 48recclapd 8509 . . . . . 6 (𝜑 → (1 / (1 − 𝐴)) ∈ ℂ)
50 simpr 109 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
515adantr 274 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
5251, 50expcld 10392 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
53 oveq2 5750 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
5453, 26fvmptg 5465 . . . . . . . 8 ((𝑗 ∈ ℕ0 ∧ (𝐴𝑗) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
5550, 52, 54syl2anc 408 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
565, 43, 55geolim 11248 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
57 breldmg 4715 . . . . . 6 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V ∧ (1 / (1 − 𝐴)) ∈ ℂ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
5837, 49, 56, 57mp3an2i 1305 . . . . 5 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
59 nn0uz 9328 . . . . . 6 0 = (ℤ‘0)
60 expcl 10279 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
615, 60sylan 281 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
6255, 61eqeltrd 2194 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
6359, 2, 62iserex 11076 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ))
6458, 63mpbid 146 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
6536, 64eqeltrrd 2195 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
661, 3, 4, 9, 65isumclim2 11159 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
67 simpr 109 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
685adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
6968, 67expcld 10392 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
7067, 69, 31syl2anc 408 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
71 expcl 10279 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
725, 71sylan 281 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
7359, 1, 2, 70, 72, 58isumsplit 11228 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
74 0zd 9034 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
7559, 74, 70, 72, 56isumclim 11158 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
7673, 75eqtr3d 2152 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (1 / (1 − 𝐴)))
775, 44, 2geoserap 11244 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) = ((1 − (𝐴𝑀)) / (1 − 𝐴)))
7877oveq1d 5757 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
7976, 78eqtr3d 2152 . . . 4 (𝜑 → (1 / (1 − 𝐴)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
8079oveq1d 5757 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
815, 2expcld 10392 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℂ)
82 subcl 7929 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (𝐴𝑀)) ∈ ℂ)
8338, 81, 82sylancr 410 . . . . 5 (𝜑 → (1 − (𝐴𝑀)) ∈ ℂ)
8441, 83, 40, 48divsubdirapd 8558 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
85 nncan 7959 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
8638, 81, 85sylancr 410 . . . . 5 (𝜑 → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
8786oveq1d 5757 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((𝐴𝑀) / (1 − 𝐴)))
8884, 87eqtr3d 2152 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((𝐴𝑀) / (1 − 𝐴)))
8983, 40, 48divclapd 8518 . . . 4 (𝜑 → ((1 − (𝐴𝑀)) / (1 − 𝐴)) ∈ ℂ)
901, 3, 32, 9, 64isumcl 11162 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) ∈ ℂ)
9189, 90pncan2d 8043 . . 3 (𝜑 → ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
9280, 88, 913eqtr3rd 2159 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) = ((𝐴𝑀) / (1 − 𝐴)))
9366, 92breqtrd 3924 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  Vcvv 2660   class class class wbr 3899  cmpt 3959  dom cdm 4509  cfv 5093  (class class class)co 5742  cc 7586  0cc0 7588  1c1 7589   + caddc 7591   < clt 7768  cle 7769  cmin 7901   # cap 8311   / cdiv 8400  0cn0 8945  cz 9022  cuz 9294  ...cfz 9758  seqcseq 10186  cexp 10260  abscabs 10737  cli 11015  Σcsu 11090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-isom 5102  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-frec 6256  df-1o 6281  df-oadd 6285  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fz 9759  df-fzo 9888  df-seqfrec 10187  df-exp 10261  df-ihash 10490  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-clim 11016  df-sumdc 11091
This theorem is referenced by:  geoisum1  11256  geoisum1c  11257  trilpolemisumle  13158
  Copyright terms: Public domain W3C validator