ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim2 GIF version

Theorem geolim2 11867
Description: The partial sums in the geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim2.3 (𝜑𝑀 ∈ ℕ0)
geolim2.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim2 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘

Proof of Theorem geolim2
Dummy variables 𝑗 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 geolim2.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
32nn0zd 9500 . . 3 (𝜑𝑀 ∈ ℤ)
4 geolim2.4 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
5 geolim.1 . . . . 5 (𝜑𝐴 ∈ ℂ)
65adantr 276 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
7 eluznn0 9727 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
82, 7sylan 283 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
96, 8expcld 10825 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴𝑘) ∈ ℂ)
10 eluzelz 9664 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
1110adantl 277 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
12 0red 8080 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
133adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
1413zred 9502 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1511zred 9502 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
162nn0ge0d 9358 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
1716adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ≤ 𝑀)
18 eluzle 9667 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
1918adantl 277 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
2012, 14, 15, 17, 19letrd 8203 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ≤ 𝑥)
21 elnn0z 9392 . . . . . . . 8 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
2211, 20, 21sylanbrc 417 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℕ0)
235adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
2423, 22expcld 10825 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐴𝑥) ∈ ℂ)
25 oveq2 5959 . . . . . . . 8 (𝑛 = 𝑥 → (𝐴𝑛) = (𝐴𝑥))
26 eqid 2206 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
2725, 26fvmptg 5662 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝐴𝑥) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) = (𝐴𝑥))
2822, 24, 27syl2anc 411 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) = (𝐴𝑥))
2928, 24eqeltrd 2283 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) ∈ ℂ)
30 oveq2 5959 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
3130, 26fvmptg 5662 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
328, 9, 31syl2anc 411 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3332, 4eqtr4d 2242 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐹𝑘))
34 addcl 8057 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3534adantl 277 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
363, 29, 33, 35seq3feq 10632 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) = seq𝑀( + , 𝐹))
37 seqex 10601 . . . . . 6 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
38 ax-1cn 8025 . . . . . . . 8 1 ∈ ℂ
39 subcl 8278 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
4038, 5, 39sylancr 414 . . . . . . 7 (𝜑 → (1 − 𝐴) ∈ ℂ)
41 1cnd 8095 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
42 1red 8094 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
43 geolim.2 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) < 1)
445, 42, 43absltap 11864 . . . . . . . . 9 (𝜑𝐴 # 1)
45 apsym 8686 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ 1 # 𝐴))
465, 41, 45syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴))
4744, 46mpbid 147 . . . . . . . 8 (𝜑 → 1 # 𝐴)
4841, 5, 47subap0d 8724 . . . . . . 7 (𝜑 → (1 − 𝐴) # 0)
4940, 48recclapd 8861 . . . . . 6 (𝜑 → (1 / (1 − 𝐴)) ∈ ℂ)
50 simpr 110 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
515adantr 276 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
5251, 50expcld 10825 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
53 oveq2 5959 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
5453, 26fvmptg 5662 . . . . . . . 8 ((𝑗 ∈ ℕ0 ∧ (𝐴𝑗) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
5550, 52, 54syl2anc 411 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
565, 43, 55geolim 11866 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
57 breldmg 4889 . . . . . 6 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V ∧ (1 / (1 − 𝐴)) ∈ ℂ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
5837, 49, 56, 57mp3an2i 1355 . . . . 5 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
59 nn0uz 9690 . . . . . 6 0 = (ℤ‘0)
60 expcl 10709 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
615, 60sylan 283 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
6255, 61eqeltrd 2283 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
6359, 2, 62iserex 11694 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ))
6458, 63mpbid 147 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
6536, 64eqeltrrd 2284 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
661, 3, 4, 9, 65isumclim2 11777 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
67 simpr 110 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
685adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
6968, 67expcld 10825 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
7067, 69, 31syl2anc 411 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
71 expcl 10709 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
725, 71sylan 283 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
7359, 1, 2, 70, 72, 58isumsplit 11846 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
74 0zd 9391 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
7559, 74, 70, 72, 56isumclim 11776 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
7673, 75eqtr3d 2241 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (1 / (1 − 𝐴)))
775, 44, 2geoserap 11862 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) = ((1 − (𝐴𝑀)) / (1 − 𝐴)))
7877oveq1d 5966 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
7976, 78eqtr3d 2241 . . . 4 (𝜑 → (1 / (1 − 𝐴)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
8079oveq1d 5966 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
815, 2expcld 10825 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℂ)
82 subcl 8278 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (𝐴𝑀)) ∈ ℂ)
8338, 81, 82sylancr 414 . . . . 5 (𝜑 → (1 − (𝐴𝑀)) ∈ ℂ)
8441, 83, 40, 48divsubdirapd 8910 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
85 nncan 8308 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
8638, 81, 85sylancr 414 . . . . 5 (𝜑 → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
8786oveq1d 5966 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((𝐴𝑀) / (1 − 𝐴)))
8884, 87eqtr3d 2241 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((𝐴𝑀) / (1 − 𝐴)))
8983, 40, 48divclapd 8870 . . . 4 (𝜑 → ((1 − (𝐴𝑀)) / (1 − 𝐴)) ∈ ℂ)
901, 3, 32, 9, 64isumcl 11780 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) ∈ ℂ)
9189, 90pncan2d 8392 . . 3 (𝜑 → ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
9280, 88, 913eqtr3rd 2248 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) = ((𝐴𝑀) / (1 − 𝐴)))
9366, 92breqtrd 4073 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773   class class class wbr 4047  cmpt 4109  dom cdm 4679  cfv 5276  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   < clt 8114  cle 8115  cmin 8250   # cap 8661   / cdiv 8752  0cn0 9302  cz 9379  cuz 9655  ...cfz 10137  seqcseq 10599  cexp 10690  abscabs 11352  cli 11633  Σcsu 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709
This theorem is referenced by:  geoisum1  11874  geoisum1c  11875  trilpolemisumle  16051
  Copyright terms: Public domain W3C validator