ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geolim2 GIF version

Theorem geolim2 11655
Description: The partial sums in the geometric series 𝐴𝑀 + 𝐴↑(𝑀 + 1)... converge to ((𝐴𝑀) / (1 − 𝐴)). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
geolim.1 (𝜑𝐴 ∈ ℂ)
geolim.2 (𝜑 → (abs‘𝐴) < 1)
geolim2.3 (𝜑𝑀 ∈ ℕ0)
geolim2.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
Assertion
Ref Expression
geolim2 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘

Proof of Theorem geolim2
Dummy variables 𝑗 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 geolim2.3 . . . 4 (𝜑𝑀 ∈ ℕ0)
32nn0zd 9437 . . 3 (𝜑𝑀 ∈ ℤ)
4 geolim2.4 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐴𝑘))
5 geolim.1 . . . . 5 (𝜑𝐴 ∈ ℂ)
65adantr 276 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
7 eluznn0 9664 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
82, 7sylan 283 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
96, 8expcld 10744 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐴𝑘) ∈ ℂ)
10 eluzelz 9601 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
1110adantl 277 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℤ)
12 0red 8020 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
133adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
1413zred 9439 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ)
1511zred 9439 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℝ)
162nn0ge0d 9296 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
1716adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ≤ 𝑀)
18 eluzle 9604 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → 𝑀𝑥)
1918adantl 277 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑀𝑥)
2012, 14, 15, 17, 19letrd 8143 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 0 ≤ 𝑥)
21 elnn0z 9330 . . . . . . . 8 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
2211, 20, 21sylanbrc 417 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝑥 ∈ ℕ0)
235adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
2423, 22expcld 10744 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐴𝑥) ∈ ℂ)
25 oveq2 5926 . . . . . . . 8 (𝑛 = 𝑥 → (𝐴𝑛) = (𝐴𝑥))
26 eqid 2193 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
2725, 26fvmptg 5633 . . . . . . 7 ((𝑥 ∈ ℕ0 ∧ (𝐴𝑥) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) = (𝐴𝑥))
2822, 24, 27syl2anc 411 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) = (𝐴𝑥))
2928, 24eqeltrd 2270 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑥) ∈ ℂ)
30 oveq2 5926 . . . . . . . 8 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
3130, 26fvmptg 5633 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
328, 9, 31syl2anc 411 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3332, 4eqtr4d 2229 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐹𝑘))
34 addcl 7997 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3534adantl 277 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
363, 29, 33, 35seq3feq 10551 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) = seq𝑀( + , 𝐹))
37 seqex 10520 . . . . . 6 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
38 ax-1cn 7965 . . . . . . . 8 1 ∈ ℂ
39 subcl 8218 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
4038, 5, 39sylancr 414 . . . . . . 7 (𝜑 → (1 − 𝐴) ∈ ℂ)
41 1cnd 8035 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
42 1red 8034 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
43 geolim.2 . . . . . . . . . 10 (𝜑 → (abs‘𝐴) < 1)
445, 42, 43absltap 11652 . . . . . . . . 9 (𝜑𝐴 # 1)
45 apsym 8625 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 # 1 ↔ 1 # 𝐴))
465, 41, 45syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐴 # 1 ↔ 1 # 𝐴))
4744, 46mpbid 147 . . . . . . . 8 (𝜑 → 1 # 𝐴)
4841, 5, 47subap0d 8663 . . . . . . 7 (𝜑 → (1 − 𝐴) # 0)
4940, 48recclapd 8800 . . . . . 6 (𝜑 → (1 / (1 − 𝐴)) ∈ ℂ)
50 simpr 110 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
515adantr 276 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
5251, 50expcld 10744 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
53 oveq2 5926 . . . . . . . . 9 (𝑛 = 𝑗 → (𝐴𝑛) = (𝐴𝑗))
5453, 26fvmptg 5633 . . . . . . . 8 ((𝑗 ∈ ℕ0 ∧ (𝐴𝑗) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
5550, 52, 54syl2anc 411 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) = (𝐴𝑗))
565, 43, 55geolim 11654 . . . . . 6 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
57 breldmg 4868 . . . . . 6 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V ∧ (1 / (1 − 𝐴)) ∈ ℂ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
5837, 49, 56, 57mp3an2i 1353 . . . . 5 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
59 nn0uz 9627 . . . . . 6 0 = (ℤ‘0)
60 expcl 10628 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
615, 60sylan 283 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
6255, 61eqeltrd 2270 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑗) ∈ ℂ)
6359, 2, 62iserex 11482 . . . . 5 (𝜑 → (seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ ))
6458, 63mpbid 147 . . . 4 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
6536, 64eqeltrrd 2271 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
661, 3, 4, 9, 65isumclim2 11565 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
67 simpr 110 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
685adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
6968, 67expcld 10744 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
7067, 69, 31syl2anc 411 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
71 expcl 10628 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
725, 71sylan 283 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
7359, 1, 2, 70, 72, 58isumsplit 11634 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
74 0zd 9329 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
7559, 74, 70, 72, 56isumclim 11564 . . . . . 6 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
7673, 75eqtr3d 2228 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (1 / (1 − 𝐴)))
775, 44, 2geoserap 11650 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) = ((1 − (𝐴𝑀)) / (1 − 𝐴)))
7877oveq1d 5933 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑀 − 1))(𝐴𝑘) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
7976, 78eqtr3d 2228 . . . 4 (𝜑 → (1 / (1 − 𝐴)) = (((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)))
8079oveq1d 5933 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
815, 2expcld 10744 . . . . . 6 (𝜑 → (𝐴𝑀) ∈ ℂ)
82 subcl 8218 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (𝐴𝑀)) ∈ ℂ)
8338, 81, 82sylancr 414 . . . . 5 (𝜑 → (1 − (𝐴𝑀)) ∈ ℂ)
8441, 83, 40, 48divsubdirapd 8849 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))))
85 nncan 8248 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴𝑀) ∈ ℂ) → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
8638, 81, 85sylancr 414 . . . . 5 (𝜑 → (1 − (1 − (𝐴𝑀))) = (𝐴𝑀))
8786oveq1d 5933 . . . 4 (𝜑 → ((1 − (1 − (𝐴𝑀))) / (1 − 𝐴)) = ((𝐴𝑀) / (1 − 𝐴)))
8884, 87eqtr3d 2228 . . 3 (𝜑 → ((1 / (1 − 𝐴)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = ((𝐴𝑀) / (1 − 𝐴)))
8983, 40, 48divclapd 8809 . . . 4 (𝜑 → ((1 − (𝐴𝑀)) / (1 − 𝐴)) ∈ ℂ)
901, 3, 32, 9, 64isumcl 11568 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) ∈ ℂ)
9189, 90pncan2d 8332 . . 3 (𝜑 → ((((1 − (𝐴𝑀)) / (1 − 𝐴)) + Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘)) − ((1 − (𝐴𝑀)) / (1 − 𝐴))) = Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘))
9280, 88, 913eqtr3rd 2235 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐴𝑘) = ((𝐴𝑀) / (1 − 𝐴)))
9366, 92breqtrd 4055 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴𝑀) / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760   class class class wbr 4029  cmpt 4090  dom cdm 4659  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   + caddc 7875   < clt 8054  cle 8055  cmin 8190   # cap 8600   / cdiv 8691  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  cexp 10609  abscabs 11141  cli 11421  Σcsu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  geoisum1  11662  geoisum1c  11663  trilpolemisumle  15528
  Copyright terms: Public domain W3C validator