Step | Hyp | Ref
| Expression |
1 | | nn0uz 9521 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0zd 9224 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
3 | | eflegeo.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | 3 | recnd 7948 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | | eqid 2170 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
6 | 5 | eftvalcn 11620 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
7 | 4, 6 | sylan 281 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
8 | | reeftcl 11618 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
9 | 3, 8 | sylan 281 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
10 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
11 | 3 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈
ℝ) |
12 | 11, 10 | reexpcld 10626 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
13 | | oveq2 5861 |
. . . . 5
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
14 | | eqid 2170 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
15 | 13, 14 | fvmptg 5572 |
. . . 4
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
16 | 10, 12, 15 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
17 | | reexpcl 10493 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℝ) |
18 | 3, 17 | sylan 281 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ) |
19 | | faccl 10669 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
20 | 19 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) ∈
ℕ) |
21 | 20 | nnred 8891 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) ∈
ℝ) |
22 | | eflegeo.2 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝐴) |
23 | 22 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤
𝐴) |
24 | 11, 10, 23 | expge0d 10627 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ≤
(𝐴↑𝑘)) |
25 | 20 | nnge1d 8921 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ≤
(!‘𝑘)) |
26 | 18, 21, 24, 25 | lemulge12d 8854 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘))) |
27 | 20 | nngt0d 8922 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 <
(!‘𝑘)) |
28 | | ledivmul 8793 |
. . . . 5
⊢ (((𝐴↑𝑘) ∈ ℝ ∧ (𝐴↑𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 <
(!‘𝑘))) →
(((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) |
29 | 18, 18, 21, 27, 28 | syl112anc 1237 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘) ↔ (𝐴↑𝑘) ≤ ((!‘𝑘) · (𝐴↑𝑘)))) |
30 | 26, 29 | mpbird 166 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ≤ (𝐴↑𝑘)) |
31 | 5 | efcllem 11622 |
. . . 4
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
32 | 4, 31 | syl 14 |
. . 3
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ ) |
33 | | seqex 10403 |
. . . 4
⊢ seq0( + ,
(𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))) ∈ V |
34 | | eflegeo.3 |
. . . . . 6
⊢ (𝜑 → 𝐴 < 1) |
35 | | 1red 7935 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) |
36 | | difrp 9649 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 1 ∈
ℝ) → (𝐴 < 1
↔ (1 − 𝐴) ∈
ℝ+)) |
37 | 3, 35, 36 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈
ℝ+)) |
38 | 34, 37 | mpbid 146 |
. . . . 5
⊢ (𝜑 → (1 − 𝐴) ∈
ℝ+) |
39 | 38 | rpreccld 9664 |
. . . 4
⊢ (𝜑 → (1 / (1 − 𝐴)) ∈
ℝ+) |
40 | 3, 22 | absidd 11131 |
. . . . . 6
⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
41 | 40, 34 | eqbrtrd 4011 |
. . . . 5
⊢ (𝜑 → (abs‘𝐴) < 1) |
42 | 4, 41, 16 | geolim 11474 |
. . . 4
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))) ⇝ (1 / (1 −
𝐴))) |
43 | | breldmg 4817 |
. . . 4
⊢ ((seq0( +
, (𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))) ∈ V ∧ (1 / (1 − 𝐴)) ∈ ℝ+
∧ seq0( + , (𝑛 ∈
ℕ0 ↦ (𝐴↑𝑛))) ⇝ (1 / (1 − 𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))) ∈ dom ⇝ ) |
44 | 33, 39, 42, 43 | mp3an2i 1337 |
. . 3
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))) ∈ dom ⇝
) |
45 | 1, 2, 7, 9, 16, 18, 30, 32, 44 | isumle 11458 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
46 | | efval 11624 |
. . 3
⊢ (𝐴 ∈ ℂ →
(exp‘𝐴) =
Σ𝑘 ∈
ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
47 | 4, 46 | syl 14 |
. 2
⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
48 | | expcl 10494 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
49 | 4, 48 | sylan 281 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) |
50 | 1, 2, 16, 49, 42 | isumclim 11384 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴↑𝑘) = (1 / (1 − 𝐴))) |
51 | 50 | eqcomd 2176 |
. 2
⊢ (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴↑𝑘)) |
52 | 45, 47, 51 | 3brtr4d 4021 |
1
⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |