ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eflegeo GIF version

Theorem eflegeo 11642
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
Hypotheses
Ref Expression
eflegeo.1 (𝜑𝐴 ∈ ℝ)
eflegeo.2 (𝜑 → 0 ≤ 𝐴)
eflegeo.3 (𝜑𝐴 < 1)
Assertion
Ref Expression
eflegeo (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))

Proof of Theorem eflegeo
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9500 . . 3 0 = (ℤ‘0)
2 0zd 9203 . . 3 (𝜑 → 0 ∈ ℤ)
3 eflegeo.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
43recnd 7927 . . . 4 (𝜑𝐴 ∈ ℂ)
5 eqid 2165 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
65eftvalcn 11598 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
74, 6sylan 281 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
8 reeftcl 11596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
93, 8sylan 281 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
10 simpr 109 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
113adantr 274 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
1211, 10reexpcld 10605 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
13 oveq2 5850 . . . . 5 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
14 eqid 2165 . . . . 5 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
1513, 14fvmptg 5562 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
1610, 12, 15syl2anc 409 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
17 reexpcl 10472 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
183, 17sylan 281 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
19 faccl 10648 . . . . . . 7 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2019adantl 275 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2120nnred 8870 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
22 eflegeo.2 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2322adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
2411, 10, 23expge0d 10606 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
2520nnge1d 8900 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘))
2618, 21, 24, 25lemulge12d 8833 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘)))
2720nngt0d 8901 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
28 ledivmul 8772 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
2918, 18, 21, 27, 28syl112anc 1232 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
3026, 29mpbird 166 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘))
315efcllem 11600 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
324, 31syl 14 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
33 seqex 10382 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
34 eflegeo.3 . . . . . 6 (𝜑𝐴 < 1)
35 1red 7914 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
36 difrp 9628 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
373, 35, 36syl2anc 409 . . . . . 6 (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
3834, 37mpbid 146 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ+)
3938rpreccld 9643 . . . 4 (𝜑 → (1 / (1 − 𝐴)) ∈ ℝ+)
403, 22absidd 11109 . . . . . 6 (𝜑 → (abs‘𝐴) = 𝐴)
4140, 34eqbrtrd 4004 . . . . 5 (𝜑 → (abs‘𝐴) < 1)
424, 41, 16geolim 11452 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
43 breldmg 4810 . . . 4 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V ∧ (1 / (1 − 𝐴)) ∈ ℝ+ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
4433, 39, 42, 43mp3an2i 1332 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
451, 2, 7, 9, 16, 18, 30, 32, 44isumle 11436 . 2 (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴𝑘))
46 efval 11602 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
474, 46syl 14 . 2 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
48 expcl 10473 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
494, 48sylan 281 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
501, 2, 16, 49, 42isumclim 11362 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
5150eqcomd 2171 . 2 (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴𝑘))
5245, 47, 513brtr4d 4014 1 (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  Vcvv 2726   class class class wbr 3982  cmpt 4043  dom cdm 4604  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  cn 8857  0cn0 9114  +crp 9589  seqcseq 10380  cexp 10454  !cfa 10638  abscabs 10939  cli 11219  Σcsu 11294  expce 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator