Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eflegeo GIF version

Theorem eflegeo 11053
 Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
Hypotheses
Ref Expression
eflegeo.1 (𝜑𝐴 ∈ ℝ)
eflegeo.2 (𝜑 → 0 ≤ 𝐴)
eflegeo.3 (𝜑𝐴 < 1)
Assertion
Ref Expression
eflegeo (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))

Proof of Theorem eflegeo
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9114 . . 3 0 = (ℤ‘0)
2 0zd 8823 . . 3 (𝜑 → 0 ∈ ℤ)
3 eflegeo.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
43recnd 7577 . . . 4 (𝜑𝐴 ∈ ℂ)
5 eqid 2089 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
65eftvalcn 11008 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
74, 6sylan 278 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
8 reeftcl 11006 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
93, 8sylan 278 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
10 simpr 109 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
113adantr 271 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
1211, 10reexpcld 10164 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
13 oveq2 5674 . . . . 5 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
14 eqid 2089 . . . . 5 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
1513, 14fvmptg 5393 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
1610, 12, 15syl2anc 404 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
17 reexpcl 10033 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
183, 17sylan 278 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
19 faccl 10204 . . . . . . 7 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2019adantl 272 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2120nnred 8496 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
22 eflegeo.2 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2322adantr 271 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
2411, 10, 23expge0d 10165 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
2520nnge1d 8526 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘))
2618, 21, 24, 25lemulge12d 8460 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘)))
2720nngt0d 8527 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
28 ledivmul 8399 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
2918, 18, 21, 27, 28syl112anc 1179 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
3026, 29mpbird 166 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘))
315efcllem 11010 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
324, 31syl 14 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
33 seqex 9918 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
34 eflegeo.3 . . . . . 6 (𝜑𝐴 < 1)
35 1red 7564 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
36 difrp 9231 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
373, 35, 36syl2anc 404 . . . . . 6 (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
3834, 37mpbid 146 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ+)
3938rpreccld 9245 . . . 4 (𝜑 → (1 / (1 − 𝐴)) ∈ ℝ+)
403, 22absidd 10661 . . . . . 6 (𝜑 → (abs‘𝐴) = 𝐴)
4140, 34eqbrtrd 3871 . . . . 5 (𝜑 → (abs‘𝐴) < 1)
424, 41, 16geolim 10966 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
43 breldmg 4655 . . . 4 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V ∧ (1 / (1 − 𝐴)) ∈ ℝ+ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
4433, 39, 42, 43mp3an2i 1279 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
451, 2, 7, 9, 16, 18, 30, 32, 44isumle 10950 . 2 (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴𝑘))
46 efval 11012 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
474, 46syl 14 . 2 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
48 expcl 10034 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
494, 48sylan 278 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
501, 2, 16, 49, 42isumclim 10876 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
5150eqcomd 2094 . 2 (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴𝑘))
5245, 47, 513brtr4d 3881 1 (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1290   ∈ wcel 1439  Vcvv 2620   class class class wbr 3851   ↦ cmpt 3905  dom cdm 4452  ‘cfv 5028  (class class class)co 5666  ℂcc 7409  ℝcr 7410  0cc0 7411  1c1 7412   + caddc 7414   · cmul 7416   < clt 7583   ≤ cle 7584   − cmin 7714   / cdiv 8200  ℕcn 8483  ℕ0cn0 8734  ℝ+crp 9195  seqcseq 9913  ↑cexp 10015  !cfa 10194  abscabs 10491   ⇝ cli 10727  Σcsu 10803  expce 10993 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526 This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-ico 9373  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-fac 10195  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804  df-ef 10999 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator