ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eflegeo GIF version

Theorem eflegeo 11693
Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
Hypotheses
Ref Expression
eflegeo.1 (𝜑𝐴 ∈ ℝ)
eflegeo.2 (𝜑 → 0 ≤ 𝐴)
eflegeo.3 (𝜑𝐴 < 1)
Assertion
Ref Expression
eflegeo (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))

Proof of Theorem eflegeo
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9551 . . 3 0 = (ℤ‘0)
2 0zd 9254 . . 3 (𝜑 → 0 ∈ ℤ)
3 eflegeo.1 . . . . 5 (𝜑𝐴 ∈ ℝ)
43recnd 7976 . . . 4 (𝜑𝐴 ∈ ℂ)
5 eqid 2177 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
65eftvalcn 11649 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
74, 6sylan 283 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
8 reeftcl 11647 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
93, 8sylan 283 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
10 simpr 110 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
113adantr 276 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
1211, 10reexpcld 10656 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
13 oveq2 5877 . . . . 5 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
14 eqid 2177 . . . . 5 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
1513, 14fvmptg 5588 . . . 4 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
1610, 12, 15syl2anc 411 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
17 reexpcl 10523 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
183, 17sylan 283 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ)
19 faccl 10699 . . . . . . 7 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2019adantl 277 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2120nnred 8921 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
22 eflegeo.2 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2322adantr 276 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ 𝐴)
2411, 10, 23expge0d 10657 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (𝐴𝑘))
2520nnge1d 8951 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 1 ≤ (!‘𝑘))
2618, 21, 24, 25lemulge12d 8884 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘)))
2720nngt0d 8952 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
28 ledivmul 8823 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
2918, 18, 21, 27, 28syl112anc 1242 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘) ↔ (𝐴𝑘) ≤ ((!‘𝑘) · (𝐴𝑘))))
3026, 29mpbird 167 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ≤ (𝐴𝑘))
315efcllem 11651 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
324, 31syl 14 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
33 seqex 10433 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V
34 eflegeo.3 . . . . . 6 (𝜑𝐴 < 1)
35 1red 7963 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
36 difrp 9679 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
373, 35, 36syl2anc 411 . . . . . 6 (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
3834, 37mpbid 147 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ+)
3938rpreccld 9694 . . . 4 (𝜑 → (1 / (1 − 𝐴)) ∈ ℝ+)
403, 22absidd 11160 . . . . . 6 (𝜑 → (abs‘𝐴) = 𝐴)
4140, 34eqbrtrd 4022 . . . . 5 (𝜑 → (abs‘𝐴) < 1)
424, 41, 16geolim 11503 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴)))
43 breldmg 4829 . . . 4 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ V ∧ (1 / (1 − 𝐴)) ∈ ℝ+ ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ⇝ (1 / (1 − 𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
4433, 39, 42, 43mp3an2i 1342 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))) ∈ dom ⇝ )
451, 2, 7, 9, 16, 18, 30, 32, 44isumle 11487 . 2 (𝜑 → Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)) ≤ Σ𝑘 ∈ ℕ0 (𝐴𝑘))
46 efval 11653 . . 3 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
474, 46syl 14 . 2 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴𝑘) / (!‘𝑘)))
48 expcl 10524 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
494, 48sylan 283 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
501, 2, 16, 49, 42isumclim 11413 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐴𝑘) = (1 / (1 − 𝐴)))
5150eqcomd 2183 . 2 (𝜑 → (1 / (1 − 𝐴)) = Σ𝑘 ∈ ℕ0 (𝐴𝑘))
5245, 47, 513brtr4d 4032 1 (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2737   class class class wbr 4000  cmpt 4061  dom cdm 4623  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  cn 8908  0cn0 9165  +crp 9640  seqcseq 10431  cexp 10505  !cfa 10689  abscabs 10990  cli 11270  Σcsu 11345  expce 11634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator