ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprlu GIF version

Theorem nqprlu 7607
Description: The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.)
Assertion
Ref Expression
nqprlu (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
Distinct variable groups:   𝐴,𝑙   𝑢,𝐴

Proof of Theorem nqprlu
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq2 4033 . . . . 5 (𝑙 = 𝑎 → (𝐴 <Q 𝑙𝐴 <Q 𝑎))
21cbvabv 2318 . . . 4 {𝑙𝐴 <Q 𝑙} = {𝑎𝐴 <Q 𝑎}
3 breq2 4033 . . . . 5 (𝑢 = 𝑎 → (𝐴 <Q 𝑢𝐴 <Q 𝑎))
43cbvabv 2318 . . . 4 {𝑢𝐴 <Q 𝑢} = {𝑎𝐴 <Q 𝑎}
52, 4eqtr4i 2217 . . 3 {𝑙𝐴 <Q 𝑙} = {𝑢𝐴 <Q 𝑢}
65opeq2i 3808 . 2 ⟨{𝑙𝑙 <Q 𝐴}, {𝑙𝐴 <Q 𝑙}⟩ = ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩
7 nqprxx 7606 . 2 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑙𝐴 <Q 𝑙}⟩ ∈ P)
86, 7eqeltrrid 2281 1 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  {cab 2179  cop 3621   class class class wbr 4029  Qcnq 7340   <Q cltq 7345  Pcnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-inp 7526
This theorem is referenced by:  recnnpr  7608  nqprl  7611  nqpru  7612  nnprlu  7613  1pr  7614  addnqprlemrl  7617  addnqprlemru  7618  addnqprlemfl  7619  addnqprlemfu  7620  addnqpr  7621  mulnqprlemrl  7633  mulnqprlemru  7634  mulnqprlemfl  7635  mulnqprlemfu  7636  mulnqpr  7637  ltnqpr  7653  ltnqpri  7654  prplnqu  7680  caucvgprlemcanl  7704  cauappcvgprlemladdfu  7714  cauappcvgprlemladdfl  7715  cauappcvgprlemladdru  7716  cauappcvgprlemladdrl  7717  cauappcvgprlemladd  7718  cauappcvgprlem1  7719  cauappcvgprlem2  7720  caucvgprlemladdfu  7737  caucvgprlemladdrl  7738  caucvgprlem1  7739  caucvgprlem2  7740  caucvgprprlemnkltj  7749  caucvgprprlemnkeqj  7750  caucvgprprlemmu  7755  caucvgprprlemopu  7759  caucvgprprlemloc  7763  caucvgprprlemexbt  7766  caucvgprprlem1  7769  caucvgprprlem2  7770  suplocexprlemloc  7781  ltrennb  7914
  Copyright terms: Public domain W3C validator