| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcnv | GIF version | ||
| Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvcnv | ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) | |
| 2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 4 | 2, 3 | grpinvcl 13351 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑁‘𝑥) ∈ 𝐵) |
| 5 | 2, 3 | grpinvcl 13351 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑁‘𝑦) ∈ 𝐵) |
| 6 | eqid 2204 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | eqid 2204 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 8 | 2, 6, 7, 3 | grpinvid1 13355 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 9 | 8 | 3com23 1211 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 10 | 2, 6, 7, 3 | grpinvid2 13356 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑥) = 𝑦 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 11 | 9, 10 | bitr4d 191 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) |
| 12 | 11 | 3expb 1206 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) |
| 13 | eqcom 2206 | . . . . 5 ⊢ (𝑥 = (𝑁‘𝑦) ↔ (𝑁‘𝑦) = 𝑥) | |
| 14 | eqcom 2206 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑥) ↔ (𝑁‘𝑥) = 𝑦) | |
| 15 | 12, 13, 14 | 3bitr4g 223 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = (𝑁‘𝑦) ↔ 𝑦 = (𝑁‘𝑥))) |
| 16 | 1, 4, 5, 15 | f1ocnv2d 6149 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)):𝐵–1-1-onto→𝐵 ∧ ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦)))) |
| 17 | 16 | simprd 114 | . 2 ⊢ (𝐺 ∈ Grp → ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) |
| 18 | 2, 3 | grpinvf 13350 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 19 | 18 | feqmptd 5631 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) |
| 20 | 19 | cnveqd 4853 | . 2 ⊢ (𝐺 ∈ Grp → ◡𝑁 = ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) |
| 21 | 18 | feqmptd 5631 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) |
| 22 | 17, 20, 21 | 3eqtr4d 2247 | 1 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ↦ cmpt 4104 ◡ccnv 4673 –1-1-onto→wf1o 5269 ‘cfv 5270 (class class class)co 5943 Basecbs 12803 +gcplusg 12880 0gc0g 13059 Grpcgrp 13303 invgcminusg 13304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 |
| This theorem is referenced by: grpinvf1o 13373 |
| Copyright terms: Public domain | W3C validator |