| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcnv | GIF version | ||
| Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvcnv | ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) | |
| 2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 4 | 2, 3 | grpinvcl 13380 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑁‘𝑥) ∈ 𝐵) |
| 5 | 2, 3 | grpinvcl 13380 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑁‘𝑦) ∈ 𝐵) |
| 6 | eqid 2205 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | eqid 2205 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 8 | 2, 6, 7, 3 | grpinvid1 13384 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 9 | 8 | 3com23 1212 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 10 | 2, 6, 7, 3 | grpinvid2 13385 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑥) = 𝑦 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 11 | 9, 10 | bitr4d 191 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) |
| 12 | 11 | 3expb 1207 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) |
| 13 | eqcom 2207 | . . . . 5 ⊢ (𝑥 = (𝑁‘𝑦) ↔ (𝑁‘𝑦) = 𝑥) | |
| 14 | eqcom 2207 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑥) ↔ (𝑁‘𝑥) = 𝑦) | |
| 15 | 12, 13, 14 | 3bitr4g 223 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = (𝑁‘𝑦) ↔ 𝑦 = (𝑁‘𝑥))) |
| 16 | 1, 4, 5, 15 | f1ocnv2d 6150 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)):𝐵–1-1-onto→𝐵 ∧ ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦)))) |
| 17 | 16 | simprd 114 | . 2 ⊢ (𝐺 ∈ Grp → ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) |
| 18 | 2, 3 | grpinvf 13379 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
| 19 | 18 | feqmptd 5632 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) |
| 20 | 19 | cnveqd 4854 | . 2 ⊢ (𝐺 ∈ Grp → ◡𝑁 = ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) |
| 21 | 18 | feqmptd 5632 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) |
| 22 | 17, 20, 21 | 3eqtr4d 2248 | 1 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 ↦ cmpt 4105 ◡ccnv 4674 –1-1-onto→wf1o 5270 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 +gcplusg 12909 0gc0g 13088 Grpcgrp 13332 invgcminusg 13333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 |
| This theorem is referenced by: grpinvf1o 13402 |
| Copyright terms: Public domain | W3C validator |