![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvcnv | GIF version |
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvcnv | ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) | |
2 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
4 | 2, 3 | grpinvcl 13120 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑁‘𝑥) ∈ 𝐵) |
5 | 2, 3 | grpinvcl 13120 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑁‘𝑦) ∈ 𝐵) |
6 | eqid 2193 | . . . . . . . . 9 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | eqid 2193 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 2, 6, 7, 3 | grpinvid1 13124 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 8 | 3com23 1211 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
10 | 2, 6, 7, 3 | grpinvid2 13125 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑥) = 𝑦 ↔ (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
11 | 9, 10 | bitr4d 191 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) |
12 | 11 | 3expb 1206 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑁‘𝑦) = 𝑥 ↔ (𝑁‘𝑥) = 𝑦)) |
13 | eqcom 2195 | . . . . 5 ⊢ (𝑥 = (𝑁‘𝑦) ↔ (𝑁‘𝑦) = 𝑥) | |
14 | eqcom 2195 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑥) ↔ (𝑁‘𝑥) = 𝑦) | |
15 | 12, 13, 14 | 3bitr4g 223 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 = (𝑁‘𝑦) ↔ 𝑦 = (𝑁‘𝑥))) |
16 | 1, 4, 5, 15 | f1ocnv2d 6122 | . . 3 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)):𝐵–1-1-onto→𝐵 ∧ ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦)))) |
17 | 16 | simprd 114 | . 2 ⊢ (𝐺 ∈ Grp → ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥)) = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) |
18 | 2, 3 | grpinvf 13119 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
19 | 18 | feqmptd 5610 | . . 3 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) |
20 | 19 | cnveqd 4838 | . 2 ⊢ (𝐺 ∈ Grp → ◡𝑁 = ◡(𝑥 ∈ 𝐵 ↦ (𝑁‘𝑥))) |
21 | 18 | feqmptd 5610 | . 2 ⊢ (𝐺 ∈ Grp → 𝑁 = (𝑦 ∈ 𝐵 ↦ (𝑁‘𝑦))) |
22 | 17, 20, 21 | 3eqtr4d 2236 | 1 ⊢ (𝐺 ∈ Grp → ◡𝑁 = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ↦ cmpt 4090 ◡ccnv 4658 –1-1-onto→wf1o 5253 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 0gc0g 12867 Grpcgrp 13072 invgcminusg 13073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 |
This theorem is referenced by: grpinvf1o 13142 |
Copyright terms: Public domain | W3C validator |