ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvcnv GIF version

Theorem grpinvcnv 13027
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvcnv (𝐺 ∈ Grp → 𝑁 = 𝑁)

Proof of Theorem grpinvcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . . 4 (𝑥𝐵 ↦ (𝑁𝑥)) = (𝑥𝐵 ↦ (𝑁𝑥))
2 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
42, 3grpinvcl 13007 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑁𝑥) ∈ 𝐵)
52, 3grpinvcl 13007 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑁𝑦) ∈ 𝐵)
6 eqid 2189 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
7 eqid 2189 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
82, 6, 7, 3grpinvid1 13011 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
983com23 1211 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
102, 6, 7, 3grpinvid2 13012 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑥) = 𝑦 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
119, 10bitr4d 191 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑁𝑥) = 𝑦))
12113expb 1206 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁𝑦) = 𝑥 ↔ (𝑁𝑥) = 𝑦))
13 eqcom 2191 . . . . 5 (𝑥 = (𝑁𝑦) ↔ (𝑁𝑦) = 𝑥)
14 eqcom 2191 . . . . 5 (𝑦 = (𝑁𝑥) ↔ (𝑁𝑥) = 𝑦)
1512, 13, 143bitr4g 223 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝑁𝑦) ↔ 𝑦 = (𝑁𝑥)))
161, 4, 5, 15f1ocnv2d 6099 . . 3 (𝐺 ∈ Grp → ((𝑥𝐵 ↦ (𝑁𝑥)):𝐵1-1-onto𝐵(𝑥𝐵 ↦ (𝑁𝑥)) = (𝑦𝐵 ↦ (𝑁𝑦))))
1716simprd 114 . 2 (𝐺 ∈ Grp → (𝑥𝐵 ↦ (𝑁𝑥)) = (𝑦𝐵 ↦ (𝑁𝑦)))
182, 3grpinvf 13006 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1918feqmptd 5590 . . 3 (𝐺 ∈ Grp → 𝑁 = (𝑥𝐵 ↦ (𝑁𝑥)))
2019cnveqd 4821 . 2 (𝐺 ∈ Grp → 𝑁 = (𝑥𝐵 ↦ (𝑁𝑥)))
2118feqmptd 5590 . 2 (𝐺 ∈ Grp → 𝑁 = (𝑦𝐵 ↦ (𝑁𝑦)))
2217, 20, 213eqtr4d 2232 1 (𝐺 ∈ Grp → 𝑁 = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  cmpt 4079  ccnv 4643  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5897  Basecbs 12515  +gcplusg 12592  0gc0g 12764  Grpcgrp 12960  invgcminusg 12961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964
This theorem is referenced by:  grpinvf1o  13029
  Copyright terms: Public domain W3C validator