ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactcnv GIF version

Theorem grplactcnv 12828
Description: The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
grplact.3 + = (+g𝐺)
grplactcnv.4 𝐼 = (invg𝐺)
Assertion
Ref Expression
grplactcnv ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))))
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   𝐼,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎)

Proof of Theorem grplactcnv
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eqid 2173 . . 3 (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑎𝑋 ↦ (𝐴 + 𝑎))
2 grplact.2 . . . . 5 𝑋 = (Base‘𝐺)
3 grplact.3 . . . . 5 + = (+g𝐺)
42, 3grpcl 12743 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑎𝑋) → (𝐴 + 𝑎) ∈ 𝑋)
543expa 1201 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑎𝑋) → (𝐴 + 𝑎) ∈ 𝑋)
6 grplactcnv.4 . . . . 5 𝐼 = (invg𝐺)
72, 6grpinvcl 12778 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
82, 3grpcl 12743 . . . . 5 ((𝐺 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
983expa 1201 . . . 4 (((𝐺 ∈ Grp ∧ (𝐼𝐴) ∈ 𝑋) ∧ 𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
107, 9syldanl 449 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑏𝑋) → ((𝐼𝐴) + 𝑏) ∈ 𝑋)
11 eqcom 2175 . . . . 5 (𝑎 = ((𝐼𝐴) + 𝑏) ↔ ((𝐼𝐴) + 𝑏) = 𝑎)
12 eqid 2173 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
132, 3, 12, 6grplinv 12779 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐼𝐴) + 𝐴) = (0g𝐺))
1413adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐼𝐴) + 𝐴) = (0g𝐺))
1514oveq1d 5877 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((0g𝐺) + 𝑎))
16 simpll 527 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝐺 ∈ Grp)
177adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝐼𝐴) ∈ 𝑋)
18 simplr 528 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝐴𝑋)
19 simprl 529 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎𝑋)
202, 3grpass 12744 . . . . . . . 8 ((𝐺 ∈ Grp ∧ ((𝐼𝐴) ∈ 𝑋𝐴𝑋𝑎𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((𝐼𝐴) + (𝐴 + 𝑎)))
2116, 17, 18, 19, 20syl13anc 1238 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝐴) + 𝑎) = ((𝐼𝐴) + (𝐴 + 𝑎)))
222, 3, 12grplid 12763 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → ((0g𝐺) + 𝑎) = 𝑎)
2322ad2ant2r 509 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((0g𝐺) + 𝑎) = 𝑎)
2415, 21, 233eqtr3rd 2215 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 = ((𝐼𝐴) + (𝐴 + 𝑎)))
2524eqeq2d 2185 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝑏) = 𝑎 ↔ ((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎))))
2611, 25bitrid 193 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎 = ((𝐼𝐴) + 𝑏) ↔ ((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎))))
27 simprr 530 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → 𝑏𝑋)
285adantrr 479 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝐴 + 𝑎) ∈ 𝑋)
292, 3grplcan 12788 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑏𝑋 ∧ (𝐴 + 𝑎) ∈ 𝑋 ∧ (𝐼𝐴) ∈ 𝑋)) → (((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎)))
3016, 27, 28, 17, 29syl13anc 1238 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐼𝐴) + 𝑏) = ((𝐼𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎)))
3126, 30bitrd 189 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎 = ((𝐼𝐴) + 𝑏) ↔ 𝑏 = (𝐴 + 𝑎)))
321, 5, 10, 31f1ocnv2d 6062 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋(𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))))
33 grplact.1 . . . . . 6 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
3433, 2grplactfval 12827 . . . . 5 (𝐴𝑋 → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
3534adantl 277 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
3635f1oeq1d 5445 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋 ↔ (𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋))
3735cnveqd 4793 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴) = (𝑎𝑋 ↦ (𝐴 + 𝑎)))
3833, 2grplactfval 12827 . . . . . 6 ((𝐼𝐴) ∈ 𝑋 → (𝐹‘(𝐼𝐴)) = (𝑎𝑋 ↦ ((𝐼𝐴) + 𝑎)))
39 oveq2 5870 . . . . . . 7 (𝑎 = 𝑏 → ((𝐼𝐴) + 𝑎) = ((𝐼𝐴) + 𝑏))
4039cbvmptv 4091 . . . . . 6 (𝑎𝑋 ↦ ((𝐼𝐴) + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))
4138, 40eqtrdi 2222 . . . . 5 ((𝐼𝐴) ∈ 𝑋 → (𝐹‘(𝐼𝐴)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))
427, 41syl 14 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘(𝐼𝐴)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))
4337, 42eqeq12d 2188 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴) = (𝐹‘(𝐼𝐴)) ↔ (𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏))))
4436, 43anbi12d 473 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))) ↔ ((𝑎𝑋 ↦ (𝐴 + 𝑎)):𝑋1-1-onto𝑋(𝑎𝑋 ↦ (𝐴 + 𝑎)) = (𝑏𝑋 ↦ ((𝐼𝐴) + 𝑏)))))
4532, 44mpbird 168 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘(𝐼𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1351  wcel 2144  cmpt 4056  ccnv 4616  1-1-ontowf1o 5204  cfv 5205  (class class class)co 5862  Basecbs 12425  +gcplusg 12489  0gc0g 12623  Grpcgrp 12735  invgcminusg 12736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-un 3128  df-in 3130  df-ss 3137  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-id 4284  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-inn 8888  df-2 8946  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738  df-minusg 12739
This theorem is referenced by:  grplactf1o  12829
  Copyright terms: Public domain W3C validator