| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . 3
⊢ (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) |
| 2 | | grplact.2 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
| 3 | | grplact.3 |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 4 | 2, 3 | grpcl 13140 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋) → (𝐴 + 𝑎) ∈ 𝑋) |
| 5 | 4 | 3expa 1205 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑎 ∈ 𝑋) → (𝐴 + 𝑎) ∈ 𝑋) |
| 6 | | grplactcnv.4 |
. . . . 5
⊢ 𝐼 = (invg‘𝐺) |
| 7 | 2, 6 | grpinvcl 13180 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
| 8 | 2, 3 | grpcl 13140 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝐼‘𝐴) ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → ((𝐼‘𝐴) + 𝑏) ∈ 𝑋) |
| 9 | 8 | 3expa 1205 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ (𝐼‘𝐴) ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → ((𝐼‘𝐴) + 𝑏) ∈ 𝑋) |
| 10 | 7, 9 | syldanl 449 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑏 ∈ 𝑋) → ((𝐼‘𝐴) + 𝑏) ∈ 𝑋) |
| 11 | | eqcom 2198 |
. . . . 5
⊢ (𝑎 = ((𝐼‘𝐴) + 𝑏) ↔ ((𝐼‘𝐴) + 𝑏) = 𝑎) |
| 12 | | eqid 2196 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 13 | 2, 3, 12, 6 | grplinv 13182 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐼‘𝐴) + 𝐴) = (0g‘𝐺)) |
| 14 | 13 | adantr 276 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐼‘𝐴) + 𝐴) = (0g‘𝐺)) |
| 15 | 14 | oveq1d 5937 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝐴) + 𝑎) = ((0g‘𝐺) + 𝑎)) |
| 16 | | simpll 527 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 17 | 7 | adantr 276 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝐼‘𝐴) ∈ 𝑋) |
| 18 | | simplr 528 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 19 | | simprl 529 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 ∈ 𝑋) |
| 20 | 2, 3 | grpass 13141 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ ((𝐼‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝐴) + 𝑎) = ((𝐼‘𝐴) + (𝐴 + 𝑎))) |
| 21 | 16, 17, 18, 19, 20 | syl13anc 1251 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝐴) + 𝑎) = ((𝐼‘𝐴) + (𝐴 + 𝑎))) |
| 22 | 2, 3, 12 | grplid 13163 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋) → ((0g‘𝐺) + 𝑎) = 𝑎) |
| 23 | 22 | ad2ant2r 509 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((0g‘𝐺) + 𝑎) = 𝑎) |
| 24 | 15, 21, 23 | 3eqtr3rd 2238 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 = ((𝐼‘𝐴) + (𝐴 + 𝑎))) |
| 25 | 24 | eqeq2d 2208 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝑏) = 𝑎 ↔ ((𝐼‘𝐴) + 𝑏) = ((𝐼‘𝐴) + (𝐴 + 𝑎)))) |
| 26 | 11, 25 | bitrid 192 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎 = ((𝐼‘𝐴) + 𝑏) ↔ ((𝐼‘𝐴) + 𝑏) = ((𝐼‘𝐴) + (𝐴 + 𝑎)))) |
| 27 | | simprr 531 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑏 ∈ 𝑋) |
| 28 | 5 | adantrr 479 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝐴 + 𝑎) ∈ 𝑋) |
| 29 | 2, 3 | grplcan 13194 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑏 ∈ 𝑋 ∧ (𝐴 + 𝑎) ∈ 𝑋 ∧ (𝐼‘𝐴) ∈ 𝑋)) → (((𝐼‘𝐴) + 𝑏) = ((𝐼‘𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎))) |
| 30 | 16, 27, 28, 17, 29 | syl13anc 1251 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐼‘𝐴) + 𝑏) = ((𝐼‘𝐴) + (𝐴 + 𝑎)) ↔ 𝑏 = (𝐴 + 𝑎))) |
| 31 | 26, 30 | bitrd 188 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎 = ((𝐼‘𝐴) + 𝑏) ↔ 𝑏 = (𝐴 + 𝑎))) |
| 32 | 1, 5, 10, 31 | f1ocnv2d 6127 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)):𝑋–1-1-onto→𝑋 ∧ ◡(𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏)))) |
| 33 | | grplact.1 |
. . . . . 6
⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| 34 | 33, 2 | grplactfval 13233 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
| 35 | 34 | adantl 277 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
| 36 | 35 | f1oeq1d 5499 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ↔ (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)):𝑋–1-1-onto→𝑋)) |
| 37 | 35 | cnveqd 4842 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡(𝐹‘𝐴) = ◡(𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
| 38 | 33, 2 | grplactfval 13233 |
. . . . . 6
⊢ ((𝐼‘𝐴) ∈ 𝑋 → (𝐹‘(𝐼‘𝐴)) = (𝑎 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑎))) |
| 39 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → ((𝐼‘𝐴) + 𝑎) = ((𝐼‘𝐴) + 𝑏)) |
| 40 | 39 | cbvmptv 4129 |
. . . . . 6
⊢ (𝑎 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑎)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏)) |
| 41 | 38, 40 | eqtrdi 2245 |
. . . . 5
⊢ ((𝐼‘𝐴) ∈ 𝑋 → (𝐹‘(𝐼‘𝐴)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏))) |
| 42 | 7, 41 | syl 14 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘(𝐼‘𝐴)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏))) |
| 43 | 37, 42 | eqeq12d 2211 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴)) ↔ ◡(𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏)))) |
| 44 | 36, 43 | anbi12d 473 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴))) ↔ ((𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)):𝑋–1-1-onto→𝑋 ∧ ◡(𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) = (𝑏 ∈ 𝑋 ↦ ((𝐼‘𝐴) + 𝑏))))) |
| 45 | 32, 44 | mpbird 167 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴)))) |