| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑦 = 𝑡 → (𝐵 · 𝑦) = (𝐵 · 𝑡)) | 
| 2 | 1 | oveq2d 5938 | 
. . . . . . 7
⊢ (𝑦 = 𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 𝑡))) | 
| 3 | 2 | eqeq2d 2208 | 
. . . . . 6
⊢ (𝑦 = 𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))) | 
| 4 | 3 | cbvrexv 2730 | 
. . . . 5
⊢
(∃𝑦 ∈
ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡))) | 
| 5 | 4 | rexbii 2504 | 
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡))) | 
| 6 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑥 = 𝑠 → (𝐴 · 𝑥) = (𝐴 · 𝑠)) | 
| 7 | 6 | oveq1d 5937 | 
. . . . . . 7
⊢ (𝑥 = 𝑠 → ((𝐴 · 𝑥) + (𝐵 · 𝑡)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 8 | 7 | eqeq2d 2208 | 
. . . . . 6
⊢ (𝑥 = 𝑠 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 9 | 8 | rexbidv 2498 | 
. . . . 5
⊢ (𝑥 = 𝑠 → (∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 10 | 9 | cbvrexv 2730 | 
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑡 ∈
ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 11 | 5, 10 | bitri 184 | 
. . 3
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) | 
| 12 |   | simpl 109 | 
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐴 ∈
ℕ0) | 
| 13 |   | simpr 110 | 
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐵 ∈
ℕ0) | 
| 14 | 11, 12, 13 | bezoutlemb 12167 | 
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → [𝐵 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | 
| 15 |   | dfsbcq2 2992 | 
. . . 4
⊢ (𝑏 = 𝐵 → ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐵 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 16 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑧 ∥ 𝑏 ↔ 𝑧 ∥ 𝐵)) | 
| 17 | 16 | anbi2d 464 | 
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏) ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 18 | 17 | imbi2d 230 | 
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ↔ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 19 | 18 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑏 = 𝐵 → (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 20 | 19 | anbi1d 465 | 
. . . . 5
⊢ (𝑏 = 𝐵 → ((∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) | 
| 21 | 20 | rexbidv 2498 | 
. . . 4
⊢ (𝑏 = 𝐵 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) | 
| 22 | 15, 21 | imbi12d 234 | 
. . 3
⊢ (𝑏 = 𝐵 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝐵 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) | 
| 23 | 11, 12, 13 | bezoutlema 12166 | 
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → [𝐴 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | 
| 24 |   | dfsbcq2 2992 | 
. . . . . 6
⊢ (𝑎 = 𝐴 → ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐴 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 25 |   | breq2 4037 | 
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → (𝑧 ∥ 𝑎 ↔ 𝑧 ∥ 𝐴)) | 
| 26 | 25 | anbi1d 465 | 
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → ((𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏) ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏))) | 
| 27 | 26 | imbi2d 230 | 
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → ((𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ↔ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)))) | 
| 28 | 27 | ralbidv 2497 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)))) | 
| 29 | 28 | anbi1d 465 | 
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ((∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) | 
| 30 | 29 | rexbidv 2498 | 
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) | 
| 31 | 30 | imbi2d 230 | 
. . . . . . 7
⊢ (𝑎 = 𝐴 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) | 
| 32 | 31 | ralbidv 2497 | 
. . . . . 6
⊢ (𝑎 = 𝐴 → (∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) | 
| 33 | 24, 32 | imbi12d 234 | 
. . . . 5
⊢ (𝑎 = 𝐴 → (([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) ↔ ([𝐴 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))) | 
| 34 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑑 ↔ 𝑤 ∥ 𝑑)) | 
| 35 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑎 ↔ 𝑤 ∥ 𝑎)) | 
| 36 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑏 ↔ 𝑤 ∥ 𝑏)) | 
| 37 | 35, 36 | anbi12d 473 | 
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏) ↔ (𝑤 ∥ 𝑎 ∧ 𝑤 ∥ 𝑏))) | 
| 38 | 34, 37 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ↔ (𝑤 ∥ 𝑑 → (𝑤 ∥ 𝑎 ∧ 𝑤 ∥ 𝑏)))) | 
| 39 | 38 | cbvralv 2729 | 
. . . . . 6
⊢
(∀𝑧 ∈
ℕ0 (𝑧
∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ↔ ∀𝑤 ∈ ℕ0 (𝑤 ∥ 𝑑 → (𝑤 ∥ 𝑎 ∧ 𝑤 ∥ 𝑏))) | 
| 40 | 11, 39, 12, 13 | bezoutlemmain 12165 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ∀𝑎 ∈ ℕ0 ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) | 
| 41 | 33, 40, 12 | rspcdva 2873 | 
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ([𝐴 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) | 
| 42 | 23, 41 | mpd 13 | 
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) | 
| 43 | 22, 42, 13 | rspcdva 2873 | 
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ([𝐵 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) | 
| 44 | 14, 43 | mpd 13 | 
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |