ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemex GIF version

Theorem bezoutlemex 11072
Description: Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
Assertion
Ref Expression
bezoutlemex ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝐵,𝑑,𝑥,𝑦   𝑧,𝐵

Proof of Theorem bezoutlemex
Dummy variables 𝑎 𝑏 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5642 . . . . . . . 8 (𝑦 = 𝑡 → (𝐵 · 𝑦) = (𝐵 · 𝑡))
21oveq2d 5650 . . . . . . 7 (𝑦 = 𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
32eqeq2d 2099 . . . . . 6 (𝑦 = 𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡))))
43cbvrexv 2591 . . . . 5 (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
54rexbii 2385 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
6 oveq2 5642 . . . . . . . 8 (𝑥 = 𝑠 → (𝐴 · 𝑥) = (𝐴 · 𝑠))
76oveq1d 5649 . . . . . . 7 (𝑥 = 𝑠 → ((𝐴 · 𝑥) + (𝐵 · 𝑡)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
87eqeq2d 2099 . . . . . 6 (𝑥 = 𝑠 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
98rexbidv 2381 . . . . 5 (𝑥 = 𝑠 → (∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
109cbvrexv 2591 . . . 4 (∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
115, 10bitri 182 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
12 simpl 107 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℕ0)
13 simpr 108 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
1411, 12, 13bezoutlemb 11071 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → [𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
15 dfsbcq2 2841 . . . 4 (𝑏 = 𝐵 → ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
16 breq2 3841 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑧𝑏𝑧𝐵))
1716anbi2d 452 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑧𝐴𝑧𝑏) ↔ (𝑧𝐴𝑧𝐵)))
1817imbi2d 228 . . . . . . 7 (𝑏 = 𝐵 → ((𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ↔ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1918ralbidv 2380 . . . . . 6 (𝑏 = 𝐵 → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
2019anbi1d 453 . . . . 5 (𝑏 = 𝐵 → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
2120rexbidv 2381 . . . 4 (𝑏 = 𝐵 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
2215, 21imbi12d 232 . . 3 (𝑏 = 𝐵 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
2311, 12, 13bezoutlema 11070 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → [𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
24 dfsbcq2 2841 . . . . . 6 (𝑎 = 𝐴 → ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
25 breq2 3841 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑧𝑎𝑧𝐴))
2625anbi1d 453 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ((𝑧𝑎𝑧𝑏) ↔ (𝑧𝐴𝑧𝑏)))
2726imbi2d 228 . . . . . . . . . . 11 (𝑎 = 𝐴 → ((𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ (𝑧𝑑 → (𝑧𝐴𝑧𝑏))))
2827ralbidv 2380 . . . . . . . . . 10 (𝑎 = 𝐴 → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏))))
2928anbi1d 453 . . . . . . . . 9 (𝑎 = 𝐴 → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3029rexbidv 2381 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3130imbi2d 228 . . . . . . 7 (𝑎 = 𝐴 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
3231ralbidv 2380 . . . . . 6 (𝑎 = 𝐴 → (∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
3324, 32imbi12d 232 . . . . 5 (𝑎 = 𝐴 → (([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) ↔ ([𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))))
34 breq1 3840 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝑑𝑤𝑑))
35 breq1 3840 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑎𝑤𝑎))
36 breq1 3840 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑏𝑤𝑏))
3735, 36anbi12d 457 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝑎𝑧𝑏) ↔ (𝑤𝑎𝑤𝑏)))
3834, 37imbi12d 232 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ (𝑤𝑑 → (𝑤𝑎𝑤𝑏))))
3938cbvralv 2590 . . . . . 6 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝑎𝑤𝑏)))
4011, 39, 12, 13bezoutlemmain 11069 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∀𝑎 ∈ ℕ0 ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
4133, 40, 12rspcdva 2727 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ([𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
4223, 41mpd 13 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4322, 42, 13rspcdva 2727 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ([𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4414, 43mpd 13 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  [wsb 1692  wral 2359  wrex 2360  [wsbc 2838   class class class wbr 3837  (class class class)co 5634   + caddc 7332   · cmul 7334  0cn0 8643  cz 8720  cdvds 10878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fl 9642  df-mod 9695  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-dvds 10879
This theorem is referenced by:  bezoutlemzz  11073
  Copyright terms: Public domain W3C validator