ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemex GIF version

Theorem bezoutlemex 11689
Description: Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
Assertion
Ref Expression
bezoutlemex ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝐵,𝑑,𝑥,𝑦   𝑧,𝐵

Proof of Theorem bezoutlemex
Dummy variables 𝑎 𝑏 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . . . 8 (𝑦 = 𝑡 → (𝐵 · 𝑦) = (𝐵 · 𝑡))
21oveq2d 5790 . . . . . . 7 (𝑦 = 𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
32eqeq2d 2151 . . . . . 6 (𝑦 = 𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡))))
43cbvrexv 2655 . . . . 5 (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
54rexbii 2442 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
6 oveq2 5782 . . . . . . . 8 (𝑥 = 𝑠 → (𝐴 · 𝑥) = (𝐴 · 𝑠))
76oveq1d 5789 . . . . . . 7 (𝑥 = 𝑠 → ((𝐴 · 𝑥) + (𝐵 · 𝑡)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
87eqeq2d 2151 . . . . . 6 (𝑥 = 𝑠 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
98rexbidv 2438 . . . . 5 (𝑥 = 𝑠 → (∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
109cbvrexv 2655 . . . 4 (∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
115, 10bitri 183 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
12 simpl 108 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℕ0)
13 simpr 109 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
1411, 12, 13bezoutlemb 11688 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → [𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
15 dfsbcq2 2912 . . . 4 (𝑏 = 𝐵 → ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
16 breq2 3933 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑧𝑏𝑧𝐵))
1716anbi2d 459 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑧𝐴𝑧𝑏) ↔ (𝑧𝐴𝑧𝐵)))
1817imbi2d 229 . . . . . . 7 (𝑏 = 𝐵 → ((𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ↔ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1918ralbidv 2437 . . . . . 6 (𝑏 = 𝐵 → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
2019anbi1d 460 . . . . 5 (𝑏 = 𝐵 → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
2120rexbidv 2438 . . . 4 (𝑏 = 𝐵 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
2215, 21imbi12d 233 . . 3 (𝑏 = 𝐵 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
2311, 12, 13bezoutlema 11687 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → [𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
24 dfsbcq2 2912 . . . . . 6 (𝑎 = 𝐴 → ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
25 breq2 3933 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑧𝑎𝑧𝐴))
2625anbi1d 460 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ((𝑧𝑎𝑧𝑏) ↔ (𝑧𝐴𝑧𝑏)))
2726imbi2d 229 . . . . . . . . . . 11 (𝑎 = 𝐴 → ((𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ (𝑧𝑑 → (𝑧𝐴𝑧𝑏))))
2827ralbidv 2437 . . . . . . . . . 10 (𝑎 = 𝐴 → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏))))
2928anbi1d 460 . . . . . . . . 9 (𝑎 = 𝐴 → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3029rexbidv 2438 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3130imbi2d 229 . . . . . . 7 (𝑎 = 𝐴 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
3231ralbidv 2437 . . . . . 6 (𝑎 = 𝐴 → (∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
3324, 32imbi12d 233 . . . . 5 (𝑎 = 𝐴 → (([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) ↔ ([𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))))
34 breq1 3932 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝑑𝑤𝑑))
35 breq1 3932 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑎𝑤𝑎))
36 breq1 3932 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑏𝑤𝑏))
3735, 36anbi12d 464 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝑎𝑧𝑏) ↔ (𝑤𝑎𝑤𝑏)))
3834, 37imbi12d 233 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ (𝑤𝑑 → (𝑤𝑎𝑤𝑏))))
3938cbvralv 2654 . . . . . 6 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝑎𝑤𝑏)))
4011, 39, 12, 13bezoutlemmain 11686 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∀𝑎 ∈ ℕ0 ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
4133, 40, 12rspcdva 2794 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ([𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
4223, 41mpd 13 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4322, 42, 13rspcdva 2794 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ([𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4414, 43mpd 13 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  [wsb 1735  wral 2416  wrex 2417  [wsbc 2909   class class class wbr 3929  (class class class)co 5774   + caddc 7623   · cmul 7625  0cn0 8977  cz 9054  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494
This theorem is referenced by:  bezoutlemzz  11690
  Copyright terms: Public domain W3C validator