ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemex GIF version

Theorem bezoutlemex 12141
Description: Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
Assertion
Ref Expression
bezoutlemex ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝐵,𝑑,𝑥,𝑦   𝑧,𝐵

Proof of Theorem bezoutlemex
Dummy variables 𝑎 𝑏 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5927 . . . . . . . 8 (𝑦 = 𝑡 → (𝐵 · 𝑦) = (𝐵 · 𝑡))
21oveq2d 5935 . . . . . . 7 (𝑦 = 𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
32eqeq2d 2205 . . . . . 6 (𝑦 = 𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡))))
43cbvrexv 2727 . . . . 5 (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
54rexbii 2501 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))
6 oveq2 5927 . . . . . . . 8 (𝑥 = 𝑠 → (𝐴 · 𝑥) = (𝐴 · 𝑠))
76oveq1d 5934 . . . . . . 7 (𝑥 = 𝑠 → ((𝐴 · 𝑥) + (𝐵 · 𝑡)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
87eqeq2d 2205 . . . . . 6 (𝑥 = 𝑠 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
98rexbidv 2495 . . . . 5 (𝑥 = 𝑠 → (∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))))
109cbvrexv 2727 . . . 4 (∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
115, 10bitri 184 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))
12 simpl 109 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐴 ∈ ℕ0)
13 simpr 110 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → 𝐵 ∈ ℕ0)
1411, 12, 13bezoutlemb 12140 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → [𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
15 dfsbcq2 2989 . . . 4 (𝑏 = 𝐵 → ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
16 breq2 4034 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑧𝑏𝑧𝐵))
1716anbi2d 464 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑧𝐴𝑧𝑏) ↔ (𝑧𝐴𝑧𝐵)))
1817imbi2d 230 . . . . . . 7 (𝑏 = 𝐵 → ((𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ↔ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1918ralbidv 2494 . . . . . 6 (𝑏 = 𝐵 → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
2019anbi1d 465 . . . . 5 (𝑏 = 𝐵 → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
2120rexbidv 2495 . . . 4 (𝑏 = 𝐵 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
2215, 21imbi12d 234 . . 3 (𝑏 = 𝐵 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
2311, 12, 13bezoutlema 12139 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → [𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
24 dfsbcq2 2989 . . . . . 6 (𝑎 = 𝐴 → ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
25 breq2 4034 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑧𝑎𝑧𝐴))
2625anbi1d 465 . . . . . . . . . . . 12 (𝑎 = 𝐴 → ((𝑧𝑎𝑧𝑏) ↔ (𝑧𝐴𝑧𝑏)))
2726imbi2d 230 . . . . . . . . . . 11 (𝑎 = 𝐴 → ((𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ (𝑧𝑑 → (𝑧𝐴𝑧𝑏))))
2827ralbidv 2494 . . . . . . . . . 10 (𝑎 = 𝐴 → (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏))))
2928anbi1d 465 . . . . . . . . 9 (𝑎 = 𝐴 → ((∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3029rexbidv 2495 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3130imbi2d 230 . . . . . . 7 (𝑎 = 𝐴 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
3231ralbidv 2494 . . . . . 6 (𝑎 = 𝐴 → (∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
3324, 32imbi12d 234 . . . . 5 (𝑎 = 𝐴 → (([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) ↔ ([𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))))
34 breq1 4033 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝑑𝑤𝑑))
35 breq1 4033 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑎𝑤𝑎))
36 breq1 4033 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝑏𝑤𝑏))
3735, 36anbi12d 473 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝑎𝑧𝑏) ↔ (𝑤𝑎𝑤𝑏)))
3834, 37imbi12d 234 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ (𝑤𝑑 → (𝑤𝑎𝑤𝑏))))
3938cbvralv 2726 . . . . . 6 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ↔ ∀𝑤 ∈ ℕ0 (𝑤𝑑 → (𝑤𝑎𝑤𝑏)))
4011, 39, 12, 13bezoutlemmain 12138 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∀𝑎 ∈ ℕ0 ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝑎𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
4133, 40, 12rspcdva 2870 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ([𝐴 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))
4223, 41mpd 13 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4322, 42, 13rspcdva 2870 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ([𝐵 / 𝑑]𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
4414, 43mpd 13 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  [wsb 1773  wcel 2164  wral 2472  wrex 2473  [wsbc 2986   class class class wbr 4030  (class class class)co 5919   + caddc 7877   · cmul 7879  0cn0 9243  cz 9320  cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934
This theorem is referenced by:  bezoutlemzz  12142
  Copyright terms: Public domain W3C validator