Step | Hyp | Ref
| Expression |
1 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑦 = 𝑡 → (𝐵 · 𝑦) = (𝐵 · 𝑡)) |
2 | 1 | oveq2d 5858 |
. . . . . . 7
⊢ (𝑦 = 𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 𝑡))) |
3 | 2 | eqeq2d 2177 |
. . . . . 6
⊢ (𝑦 = 𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)))) |
4 | 3 | cbvrexv 2693 |
. . . . 5
⊢
(∃𝑦 ∈
ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡))) |
5 | 4 | rexbii 2473 |
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡))) |
6 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑥 = 𝑠 → (𝐴 · 𝑥) = (𝐴 · 𝑠)) |
7 | 6 | oveq1d 5857 |
. . . . . . 7
⊢ (𝑥 = 𝑠 → ((𝐴 · 𝑥) + (𝐵 · 𝑡)) = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
8 | 7 | eqeq2d 2177 |
. . . . . 6
⊢ (𝑥 = 𝑠 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
9 | 8 | rexbidv 2467 |
. . . . 5
⊢ (𝑥 = 𝑠 → (∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
10 | 9 | cbvrexv 2693 |
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑡 ∈
ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑡)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
11 | 5, 10 | bitri 183 |
. . 3
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) |
12 | | simpl 108 |
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐴 ∈
ℕ0) |
13 | | simpr 109 |
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → 𝐵 ∈
ℕ0) |
14 | 11, 12, 13 | bezoutlemb 11933 |
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → [𝐵 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
15 | | dfsbcq2 2954 |
. . . 4
⊢ (𝑏 = 𝐵 → ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐵 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
16 | | breq2 3986 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑧 ∥ 𝑏 ↔ 𝑧 ∥ 𝐵)) |
17 | 16 | anbi2d 460 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏) ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
18 | 17 | imbi2d 229 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ↔ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
19 | 18 | ralbidv 2466 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
20 | 19 | anbi1d 461 |
. . . . 5
⊢ (𝑏 = 𝐵 → ((∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) |
21 | 20 | rexbidv 2467 |
. . . 4
⊢ (𝑏 = 𝐵 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) |
22 | 15, 21 | imbi12d 233 |
. . 3
⊢ (𝑏 = 𝐵 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝐵 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) |
23 | 11, 12, 13 | bezoutlema 11932 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → [𝐴 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
24 | | dfsbcq2 2954 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ [𝐴 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
25 | | breq2 3986 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → (𝑧 ∥ 𝑎 ↔ 𝑧 ∥ 𝐴)) |
26 | 25 | anbi1d 461 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → ((𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏) ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏))) |
27 | 26 | imbi2d 229 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → ((𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ↔ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)))) |
28 | 27 | ralbidv 2466 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)))) |
29 | 28 | anbi1d 461 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ((∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) |
30 | 29 | rexbidv 2467 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) ↔ ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) |
31 | 30 | imbi2d 229 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) |
32 | 31 | ralbidv 2466 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) ↔ ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) |
33 | 24, 32 | imbi12d 233 |
. . . . 5
⊢ (𝑎 = 𝐴 → (([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) ↔ ([𝐴 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))))) |
34 | | breq1 3985 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑑 ↔ 𝑤 ∥ 𝑑)) |
35 | | breq1 3985 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑎 ↔ 𝑤 ∥ 𝑎)) |
36 | | breq1 3985 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑏 ↔ 𝑤 ∥ 𝑏)) |
37 | 35, 36 | anbi12d 465 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏) ↔ (𝑤 ∥ 𝑎 ∧ 𝑤 ∥ 𝑏))) |
38 | 34, 37 | imbi12d 233 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ↔ (𝑤 ∥ 𝑑 → (𝑤 ∥ 𝑎 ∧ 𝑤 ∥ 𝑏)))) |
39 | 38 | cbvralv 2692 |
. . . . . 6
⊢
(∀𝑧 ∈
ℕ0 (𝑧
∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ↔ ∀𝑤 ∈ ℕ0 (𝑤 ∥ 𝑑 → (𝑤 ∥ 𝑎 ∧ 𝑤 ∥ 𝑏))) |
40 | 11, 39, 12, 13 | bezoutlemmain 11931 |
. . . . 5
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ∀𝑎 ∈ ℕ0 ([𝑎 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝑎 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) |
41 | 33, 40, 12 | rspcdva 2835 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ([𝐴 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))) |
42 | 23, 41 | mpd 13 |
. . 3
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ∀𝑏 ∈ ℕ0 ([𝑏 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝑏)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) |
43 | 22, 42, 13 | rspcdva 2835 |
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ([𝐵 / 𝑑]∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) |
44 | 14, 43 | mpd 13 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0
(𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |