ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpti GIF version

Theorem dmmpti 5425
Description: Domain of an ordered-pair class abstraction that specifies a function. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fnmpti.1 𝐵 ∈ V
fnmpti.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmpti dom 𝐹 = 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem dmmpti
StepHypRef Expression
1 fnmpti.1 . . 3 𝐵 ∈ V
2 fnmpti.2 . . 3 𝐹 = (𝑥𝐴𝐵)
31, 2fnmpti 5424 . 2 𝐹 Fn 𝐴
4 fndm 5392 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
53, 4ax-mp 5 1 dom 𝐹 = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  Vcvv 2776  cmpt 4121  dom cdm 4693   Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292  df-fn 5293
This theorem is referenced by:  brtpos2  6360  dmtopon  14610
  Copyright terms: Public domain W3C validator