| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemhdmp1 | GIF version | ||
| Description: Lemma for ennnfone 12996. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| ennnfonelemhdmp1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
| ennnfonelemhdmp1.nel | ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
| Ref | Expression |
|---|---|
| ennnfonelemhdmp1 | ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemh.dceq | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | ennnfonelemh.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 3 | ennnfonelemh.ne | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
| 4 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
| 5 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 6 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 7 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
| 8 | ennnfonelemhdmp1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemp1 12977 | . . . . . 6 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
| 10 | ennnfonelemhdmp1.nel | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
| 11 | 10 | iffalsed 3612 | . . . . . 6 ⊢ (𝜑 → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
| 12 | 9, 11 | eqtrd 2262 | . . . . 5 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
| 13 | 12 | dmeqd 4925 | . . . 4 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = dom ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
| 14 | dmun 4930 | . . . 4 ⊢ dom ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) = (dom (𝐻‘𝑃) ∪ dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) | |
| 15 | 13, 14 | eqtrdi 2278 | . . 3 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻‘𝑃) ∪ dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
| 16 | fof 5548 | . . . . . . 7 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
| 17 | 2, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
| 18 | 5 | frechashgf1o 10650 | . . . . . . . . 9 ⊢ 𝑁:ω–1-1-onto→ℕ0 |
| 19 | f1ocnv 5585 | . . . . . . . . 9 ⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) | |
| 20 | f1of 5572 | . . . . . . . . 9 ⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) | |
| 21 | 18, 19, 20 | mp2b 8 | . . . . . . . 8 ⊢ ◡𝑁:ℕ0⟶ω |
| 22 | 21 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
| 23 | 22, 8 | ffvelcdmd 5771 | . . . . . 6 ⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
| 24 | 17, 23 | ffvelcdmd 5771 | . . . . 5 ⊢ (𝜑 → (𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴) |
| 25 | dmsnopg 5200 | . . . . 5 ⊢ ((𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴 → dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉} = {dom (𝐻‘𝑃)}) | |
| 26 | 24, 25 | syl 14 | . . . 4 ⊢ (𝜑 → dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉} = {dom (𝐻‘𝑃)}) |
| 27 | 26 | uneq2d 3358 | . . 3 ⊢ (𝜑 → (dom (𝐻‘𝑃) ∪ dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)})) |
| 28 | 15, 27 | eqtrd 2262 | . 2 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)})) |
| 29 | df-suc 4462 | . 2 ⊢ suc dom (𝐻‘𝑃) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)}) | |
| 30 | 28, 29 | eqtr4di 2280 | 1 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 ∃wrex 2509 ∪ cun 3195 ∅c0 3491 ifcif 3602 {csn 3666 〈cop 3669 ↦ cmpt 4145 suc csuc 4456 ωcom 4682 ◡ccnv 4718 dom cdm 4719 “ cima 4722 ⟶wf 5314 –onto→wfo 5316 –1-1-onto→wf1o 5317 ‘cfv 5318 (class class class)co 6001 ∈ cmpo 6003 freccfrec 6536 ↑pm cpm 6796 0cc0 7999 1c1 8000 + caddc 8002 − cmin 8317 ℕ0cn0 9369 ℤcz 9446 seqcseq 10669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pm 6798 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 |
| This theorem is referenced by: ennnfonelemhf1o 12984 |
| Copyright terms: Public domain | W3C validator |