![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemhdmp1 | GIF version |
Description: Lemma for ennnfone 12439. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfonelemhdmp1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
ennnfonelemhdmp1.nel | ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
Ref | Expression |
---|---|
ennnfonelemhdmp1 | ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) | |
5 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | ennnfonelemhdmp1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemp1 12420 | . . . . . 6 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}))) |
10 | ennnfonelemhdmp1.nel | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
11 | 10 | iffalsed 3556 | . . . . . 6 ⊢ (𝜑 → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) = ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
12 | 9, 11 | eqtrd 2220 | . . . . 5 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
13 | 12 | dmeqd 4841 | . . . 4 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = dom ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
14 | dmun 4846 | . . . 4 ⊢ dom ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}) = (dom (𝐻‘𝑃) ∪ dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}) | |
15 | 13, 14 | eqtrdi 2236 | . . 3 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻‘𝑃) ∪ dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
16 | fof 5450 | . . . . . . 7 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
17 | 2, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
18 | 5 | frechashgf1o 10441 | . . . . . . . . 9 ⊢ 𝑁:ω–1-1-onto→ℕ0 |
19 | f1ocnv 5486 | . . . . . . . . 9 ⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) | |
20 | f1of 5473 | . . . . . . . . 9 ⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) | |
21 | 18, 19, 20 | mp2b 8 | . . . . . . . 8 ⊢ ◡𝑁:ℕ0⟶ω |
22 | 21 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
23 | 22, 8 | ffvelcdmd 5665 | . . . . . 6 ⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
24 | 17, 23 | ffvelcdmd 5665 | . . . . 5 ⊢ (𝜑 → (𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴) |
25 | dmsnopg 5112 | . . . . 5 ⊢ ((𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴 → dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩} = {dom (𝐻‘𝑃)}) | |
26 | 24, 25 | syl 14 | . . . 4 ⊢ (𝜑 → dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩} = {dom (𝐻‘𝑃)}) |
27 | 26 | uneq2d 3301 | . . 3 ⊢ (𝜑 → (dom (𝐻‘𝑃) ∪ dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)})) |
28 | 15, 27 | eqtrd 2220 | . 2 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)})) |
29 | df-suc 4383 | . 2 ⊢ suc dom (𝐻‘𝑃) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)}) | |
30 | 28, 29 | eqtr4di 2238 | 1 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 835 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ∀wral 2465 ∃wrex 2466 ∪ cun 3139 ∅c0 3434 ifcif 3546 {csn 3604 ⟨cop 3607 ↦ cmpt 4076 suc csuc 4377 ωcom 4601 ◡ccnv 4637 dom cdm 4638 “ cima 4641 ⟶wf 5224 –onto→wfo 5226 –1-1-onto→wf1o 5227 ‘cfv 5228 (class class class)co 5888 ∈ cmpo 5890 freccfrec 6404 ↑pm cpm 6662 0cc0 7824 1c1 7825 + caddc 7827 − cmin 8141 ℕ0cn0 9189 ℤcz 9266 seqcseq 10458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-frec 6405 df-pm 6664 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-inn 8933 df-n0 9190 df-z 9267 df-uz 9542 df-seqfrec 10459 |
This theorem is referenced by: ennnfonelemhf1o 12427 |
Copyright terms: Public domain | W3C validator |