![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemhdmp1 | GIF version |
Description: Lemma for ennnfone 12451. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfonelemhdmp1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
ennnfonelemhdmp1.nel | ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
Ref | Expression |
---|---|
ennnfonelemhdmp1 | ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹‘𝑦)⟩}))) | |
5 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | ennnfonelemhdmp1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemp1 12432 | . . . . . 6 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}))) |
10 | ennnfonelemhdmp1.nel | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
11 | 10 | iffalsed 3559 | . . . . . 6 ⊢ (𝜑 → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) = ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
12 | 9, 11 | eqtrd 2222 | . . . . 5 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
13 | 12 | dmeqd 4844 | . . . 4 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = dom ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
14 | dmun 4849 | . . . 4 ⊢ dom ((𝐻‘𝑃) ∪ {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}) = (dom (𝐻‘𝑃) ∪ dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}) | |
15 | 13, 14 | eqtrdi 2238 | . . 3 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻‘𝑃) ∪ dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩})) |
16 | fof 5454 | . . . . . . 7 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
17 | 2, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
18 | 5 | frechashgf1o 10448 | . . . . . . . . 9 ⊢ 𝑁:ω–1-1-onto→ℕ0 |
19 | f1ocnv 5490 | . . . . . . . . 9 ⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) | |
20 | f1of 5477 | . . . . . . . . 9 ⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) | |
21 | 18, 19, 20 | mp2b 8 | . . . . . . . 8 ⊢ ◡𝑁:ℕ0⟶ω |
22 | 21 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
23 | 22, 8 | ffvelcdmd 5669 | . . . . . 6 ⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
24 | 17, 23 | ffvelcdmd 5669 | . . . . 5 ⊢ (𝜑 → (𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴) |
25 | dmsnopg 5115 | . . . . 5 ⊢ ((𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴 → dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩} = {dom (𝐻‘𝑃)}) | |
26 | 24, 25 | syl 14 | . . . 4 ⊢ (𝜑 → dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩} = {dom (𝐻‘𝑃)}) |
27 | 26 | uneq2d 3304 | . . 3 ⊢ (𝜑 → (dom (𝐻‘𝑃) ∪ dom {⟨dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))⟩}) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)})) |
28 | 15, 27 | eqtrd 2222 | . 2 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)})) |
29 | df-suc 4386 | . 2 ⊢ suc dom (𝐻‘𝑃) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)}) | |
30 | 28, 29 | eqtr4di 2240 | 1 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 ∀wral 2468 ∃wrex 2469 ∪ cun 3142 ∅c0 3437 ifcif 3549 {csn 3607 ⟨cop 3610 ↦ cmpt 4079 suc csuc 4380 ωcom 4604 ◡ccnv 4640 dom cdm 4641 “ cima 4644 ⟶wf 5228 –onto→wfo 5230 –1-1-onto→wf1o 5231 ‘cfv 5232 (class class class)co 5892 ∈ cmpo 5894 freccfrec 6410 ↑pm cpm 6668 0cc0 7831 1c1 7832 + caddc 7834 − cmin 8148 ℕ0cn0 9196 ℤcz 9273 seqcseq 10465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7922 ax-resscn 7923 ax-1cn 7924 ax-1re 7925 ax-icn 7926 ax-addcl 7927 ax-addrcl 7928 ax-mulcl 7929 ax-addcom 7931 ax-addass 7933 ax-distr 7935 ax-i2m1 7936 ax-0lt1 7937 ax-0id 7939 ax-rnegex 7940 ax-cnre 7942 ax-pre-ltirr 7943 ax-pre-ltwlin 7944 ax-pre-lttrn 7945 ax-pre-ltadd 7947 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-frec 6411 df-pm 6670 df-pnf 8014 df-mnf 8015 df-xr 8016 df-ltxr 8017 df-le 8018 df-sub 8150 df-neg 8151 df-inn 8940 df-n0 9197 df-z 9274 df-uz 9549 df-seqfrec 10466 |
This theorem is referenced by: ennnfonelemhf1o 12439 |
Copyright terms: Public domain | W3C validator |