ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhdmp1 GIF version

Theorem ennnfonelemhdmp1 12780
Description: Lemma for ennnfone 12796. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemhdmp1.p (𝜑𝑃 ∈ ℕ0)
ennnfonelemhdmp1.nel (𝜑 → ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
Assertion
Ref Expression
ennnfonelemhdmp1 (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻𝑃))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑃,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemhdmp1
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . . 7 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . . 7 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . . 7 𝐻 = seq0(𝐺, 𝐽)
8 ennnfonelemhdmp1.p . . . . . . 7 (𝜑𝑃 ∈ ℕ0)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemp1 12777 . . . . . 6 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
10 ennnfonelemhdmp1.nel . . . . . . 7 (𝜑 → ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
1110iffalsed 3581 . . . . . 6 (𝜑 → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
129, 11eqtrd 2238 . . . . 5 (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
1312dmeqd 4880 . . . 4 (𝜑 → dom (𝐻‘(𝑃 + 1)) = dom ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
14 dmun 4885 . . . 4 dom ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) = (dom (𝐻𝑃) ∪ dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})
1513, 14eqtrdi 2254 . . 3 (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻𝑃) ∪ dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
16 fof 5498 . . . . . . 7 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
172, 16syl 14 . . . . . 6 (𝜑𝐹:ω⟶𝐴)
185frechashgf1o 10573 . . . . . . . . 9 𝑁:ω–1-1-onto→ℕ0
19 f1ocnv 5535 . . . . . . . . 9 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
20 f1of 5522 . . . . . . . . 9 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
2118, 19, 20mp2b 8 . . . . . . . 8 𝑁:ℕ0⟶ω
2221a1i 9 . . . . . . 7 (𝜑𝑁:ℕ0⟶ω)
2322, 8ffvelcdmd 5716 . . . . . 6 (𝜑 → (𝑁𝑃) ∈ ω)
2417, 23ffvelcdmd 5716 . . . . 5 (𝜑 → (𝐹‘(𝑁𝑃)) ∈ 𝐴)
25 dmsnopg 5154 . . . . 5 ((𝐹‘(𝑁𝑃)) ∈ 𝐴 → dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} = {dom (𝐻𝑃)})
2624, 25syl 14 . . . 4 (𝜑 → dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} = {dom (𝐻𝑃)})
2726uneq2d 3327 . . 3 (𝜑 → (dom (𝐻𝑃) ∪ dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) = (dom (𝐻𝑃) ∪ {dom (𝐻𝑃)}))
2815, 27eqtrd 2238 . 2 (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻𝑃) ∪ {dom (𝐻𝑃)}))
29 df-suc 4418 . 2 suc dom (𝐻𝑃) = (dom (𝐻𝑃) ∪ {dom (𝐻𝑃)})
3028, 29eqtr4di 2256 1 (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 836   = wceq 1373  wcel 2176  wne 2376  wral 2484  wrex 2485  cun 3164  c0 3460  ifcif 3571  {csn 3633  cop 3636  cmpt 4105  suc csuc 4412  ωcom 4638  ccnv 4674  dom cdm 4675  cima 4678  wf 5267  ontowfo 5269  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  cmpo 5946  freccfrec 6476  pm cpm 6736  0cc0 7925  1c1 7926   + caddc 7928  cmin 8243  0cn0 9295  cz 9372  seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pm 6738  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593
This theorem is referenced by:  ennnfonelemhf1o  12784
  Copyright terms: Public domain W3C validator