ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemhdmp1 GIF version

Theorem ennnfonelemhdmp1 12351
Description: Lemma for ennnfone 12367. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
ennnfonelemhdmp1.p (𝜑𝑃 ∈ ℕ0)
ennnfonelemhdmp1.nel (𝜑 → ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
Assertion
Ref Expression
ennnfonelemhdmp1 (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻𝑃))
Distinct variable groups:   𝐴,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑗,𝐺   𝑥,𝐻,𝑦   𝑗,𝐽   𝑥,𝑁,𝑦   𝑃,𝑗,𝑥,𝑦   𝜑,𝑗,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐴(𝑘,𝑛)   𝑃(𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑘,𝑛)   𝐻(𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑘,𝑛)   𝑁(𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemhdmp1
StepHypRef Expression
1 ennnfonelemh.dceq . . . . . . 7 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemh.f . . . . . . 7 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemh.ne . . . . . . 7 (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
4 ennnfonelemh.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
5 ennnfonelemh.n . . . . . . 7 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
6 ennnfonelemh.j . . . . . . 7 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
7 ennnfonelemh.h . . . . . . 7 𝐻 = seq0(𝐺, 𝐽)
8 ennnfonelemhdmp1.p . . . . . . 7 (𝜑𝑃 ∈ ℕ0)
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemp1 12348 . . . . . 6 (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
10 ennnfonelemhdmp1.nel . . . . . . 7 (𝜑 → ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))
1110iffalsed 3535 . . . . . 6 (𝜑 → if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
129, 11eqtrd 2203 . . . . 5 (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
1312dmeqd 4811 . . . 4 (𝜑 → dom (𝐻‘(𝑃 + 1)) = dom ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
14 dmun 4816 . . . 4 dom ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) = (dom (𝐻𝑃) ∪ dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})
1513, 14eqtrdi 2219 . . 3 (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻𝑃) ∪ dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}))
16 fof 5418 . . . . . . 7 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
172, 16syl 14 . . . . . 6 (𝜑𝐹:ω⟶𝐴)
185frechashgf1o 10371 . . . . . . . . 9 𝑁:ω–1-1-onto→ℕ0
19 f1ocnv 5453 . . . . . . . . 9 (𝑁:ω–1-1-onto→ℕ0𝑁:ℕ01-1-onto→ω)
20 f1of 5440 . . . . . . . . 9 (𝑁:ℕ01-1-onto→ω → 𝑁:ℕ0⟶ω)
2118, 19, 20mp2b 8 . . . . . . . 8 𝑁:ℕ0⟶ω
2221a1i 9 . . . . . . 7 (𝜑𝑁:ℕ0⟶ω)
2322, 8ffvelrnd 5629 . . . . . 6 (𝜑 → (𝑁𝑃) ∈ ω)
2417, 23ffvelrnd 5629 . . . . 5 (𝜑 → (𝐹‘(𝑁𝑃)) ∈ 𝐴)
25 dmsnopg 5080 . . . . 5 ((𝐹‘(𝑁𝑃)) ∈ 𝐴 → dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} = {dom (𝐻𝑃)})
2624, 25syl 14 . . . 4 (𝜑 → dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩} = {dom (𝐻𝑃)})
2726uneq2d 3281 . . 3 (𝜑 → (dom (𝐻𝑃) ∪ dom {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩}) = (dom (𝐻𝑃) ∪ {dom (𝐻𝑃)}))
2815, 27eqtrd 2203 . 2 (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻𝑃) ∪ {dom (𝐻𝑃)}))
29 df-suc 4354 . 2 suc dom (𝐻𝑃) = (dom (𝐻𝑃) ∪ {dom (𝐻𝑃)})
3028, 29eqtr4di 2221 1 (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 829   = wceq 1348  wcel 2141  wne 2340  wral 2448  wrex 2449  cun 3119  c0 3414  ifcif 3525  {csn 3581  cop 3584  cmpt 4048  suc csuc 4348  ωcom 4572  ccnv 4608  dom cdm 4609  cima 4612  wf 5192  ontowfo 5194  1-1-ontowf1o 5195  cfv 5196  (class class class)co 5850  cmpo 5852  freccfrec 6366  pm cpm 6623  0cc0 7761  1c1 7762   + caddc 7764  cmin 8077  0cn0 9122  cz 9199  seqcseq 10388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pm 6625  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200  df-uz 9475  df-seqfrec 10389
This theorem is referenced by:  ennnfonelemhf1o  12355
  Copyright terms: Public domain W3C validator