Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemhdmp1 | GIF version |
Description: Lemma for ennnfone 12367. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
ennnfonelemhdmp1.p | ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
ennnfonelemhdmp1.nel | ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) |
Ref | Expression |
---|---|
ennnfonelemhdmp1 | ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
5 | ennnfonelemh.n | . . . . . . 7 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . . . 7 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . . . 7 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | ennnfonelemhdmp1.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ0) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ennnfonelemp1 12348 | . . . . . 6 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}))) |
10 | ennnfonelemhdmp1.nel | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃))) | |
11 | 10 | iffalsed 3535 | . . . . . 6 ⊢ (𝜑 → if((𝐹‘(◡𝑁‘𝑃)) ∈ (𝐹 “ (◡𝑁‘𝑃)), (𝐻‘𝑃), ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
12 | 9, 11 | eqtrd 2203 | . . . . 5 ⊢ (𝜑 → (𝐻‘(𝑃 + 1)) = ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
13 | 12 | dmeqd 4811 | . . . 4 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = dom ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
14 | dmun 4816 | . . . 4 ⊢ dom ((𝐻‘𝑃) ∪ {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) = (dom (𝐻‘𝑃) ∪ dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) | |
15 | 13, 14 | eqtrdi 2219 | . . 3 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻‘𝑃) ∪ dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉})) |
16 | fof 5418 | . . . . . . 7 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
17 | 2, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
18 | 5 | frechashgf1o 10371 | . . . . . . . . 9 ⊢ 𝑁:ω–1-1-onto→ℕ0 |
19 | f1ocnv 5453 | . . . . . . . . 9 ⊢ (𝑁:ω–1-1-onto→ℕ0 → ◡𝑁:ℕ0–1-1-onto→ω) | |
20 | f1of 5440 | . . . . . . . . 9 ⊢ (◡𝑁:ℕ0–1-1-onto→ω → ◡𝑁:ℕ0⟶ω) | |
21 | 18, 19, 20 | mp2b 8 | . . . . . . . 8 ⊢ ◡𝑁:ℕ0⟶ω |
22 | 21 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → ◡𝑁:ℕ0⟶ω) |
23 | 22, 8 | ffvelrnd 5629 | . . . . . 6 ⊢ (𝜑 → (◡𝑁‘𝑃) ∈ ω) |
24 | 17, 23 | ffvelrnd 5629 | . . . . 5 ⊢ (𝜑 → (𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴) |
25 | dmsnopg 5080 | . . . . 5 ⊢ ((𝐹‘(◡𝑁‘𝑃)) ∈ 𝐴 → dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉} = {dom (𝐻‘𝑃)}) | |
26 | 24, 25 | syl 14 | . . . 4 ⊢ (𝜑 → dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉} = {dom (𝐻‘𝑃)}) |
27 | 26 | uneq2d 3281 | . . 3 ⊢ (𝜑 → (dom (𝐻‘𝑃) ∪ dom {〈dom (𝐻‘𝑃), (𝐹‘(◡𝑁‘𝑃))〉}) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)})) |
28 | 15, 27 | eqtrd 2203 | . 2 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)})) |
29 | df-suc 4354 | . 2 ⊢ suc dom (𝐻‘𝑃) = (dom (𝐻‘𝑃) ∪ {dom (𝐻‘𝑃)}) | |
30 | 28, 29 | eqtr4di 2221 | 1 ⊢ (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻‘𝑃)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∀wral 2448 ∃wrex 2449 ∪ cun 3119 ∅c0 3414 ifcif 3525 {csn 3581 〈cop 3584 ↦ cmpt 4048 suc csuc 4348 ωcom 4572 ◡ccnv 4608 dom cdm 4609 “ cima 4612 ⟶wf 5192 –onto→wfo 5194 –1-1-onto→wf1o 5195 ‘cfv 5196 (class class class)co 5850 ∈ cmpo 5852 freccfrec 6366 ↑pm cpm 6623 0cc0 7761 1c1 7762 + caddc 7764 − cmin 8077 ℕ0cn0 9122 ℤcz 9199 seqcseq 10388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-pm 6625 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 df-seqfrec 10389 |
This theorem is referenced by: ennnfonelemhf1o 12355 |
Copyright terms: Public domain | W3C validator |