ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsrec GIF version

Theorem mulcnsrec 7784
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6565, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7782. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
mulcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )

Proof of Theorem mulcnsrec
StepHypRef Expression
1 mulcnsr 7776 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
2 opelxpi 4636 . . . 4 ((𝐴R𝐵R) → ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 ecidg 6565 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (R × R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
42, 3syl 14 . . 3 ((𝐴R𝐵R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
5 opelxpi 4636 . . . 4 ((𝐶R𝐷R) → ⟨𝐶, 𝐷⟩ ∈ (R × R))
6 ecidg 6565 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (R × R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
75, 6syl 14 . . 3 ((𝐶R𝐷R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
84, 7oveqan12d 5861 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩))
9 simpll 519 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐴R)
10 simprl 521 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐶R)
11 mulclsr 7695 . . . . . 6 ((𝐴R𝐶R) → (𝐴 ·R 𝐶) ∈ R)
129, 10, 11syl2anc 409 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐶) ∈ R)
13 m1r 7693 . . . . . 6 -1RR
14 simplr 520 . . . . . . 7 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐵R)
15 simprr 522 . . . . . . 7 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐷R)
16 mulclsr 7695 . . . . . . 7 ((𝐵R𝐷R) → (𝐵 ·R 𝐷) ∈ R)
1714, 15, 16syl2anc 409 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐷) ∈ R)
18 mulclsr 7695 . . . . . 6 ((-1RR ∧ (𝐵 ·R 𝐷) ∈ R) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
1913, 17, 18sylancr 411 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
20 addclsr 7694 . . . . 5 (((𝐴 ·R 𝐶) ∈ R ∧ (-1R ·R (𝐵 ·R 𝐷)) ∈ R) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
2112, 19, 20syl2anc 409 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
22 mulclsr 7695 . . . . . 6 ((𝐵R𝐶R) → (𝐵 ·R 𝐶) ∈ R)
2314, 10, 22syl2anc 409 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐶) ∈ R)
24 mulclsr 7695 . . . . . 6 ((𝐴R𝐷R) → (𝐴 ·R 𝐷) ∈ R)
259, 15, 24syl2anc 409 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐷) ∈ R)
26 addclsr 7694 . . . . 5 (((𝐵 ·R 𝐶) ∈ R ∧ (𝐴 ·R 𝐷) ∈ R) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
2723, 25, 26syl2anc 409 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
28 opelxpi 4636 . . . 4 ((((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R ∧ ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
2921, 27, 28syl2anc 409 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
30 ecidg 6565 . . 3 (⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R) → [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
3129, 30syl 14 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
321, 8, 313eqtr4d 2208 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cop 3579   E cep 4265   × cxp 4602  ccnv 4603  (class class class)co 5842  [cec 6499  Rcnr 7238  -1Rcm1r 7241   +R cplr 7242   ·R cmr 7243   · cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-m1r 7674  df-c 7759  df-mul 7765
This theorem is referenced by:  axmulcom  7812  axmulass  7814  axdistr  7815
  Copyright terms: Public domain W3C validator