ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsrec GIF version

Theorem mulcnsrec 7958
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6688, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7956. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
mulcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )

Proof of Theorem mulcnsrec
StepHypRef Expression
1 mulcnsr 7950 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
2 opelxpi 4708 . . . 4 ((𝐴R𝐵R) → ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 ecidg 6688 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (R × R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
42, 3syl 14 . . 3 ((𝐴R𝐵R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
5 opelxpi 4708 . . . 4 ((𝐶R𝐷R) → ⟨𝐶, 𝐷⟩ ∈ (R × R))
6 ecidg 6688 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (R × R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
75, 6syl 14 . . 3 ((𝐶R𝐷R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
84, 7oveqan12d 5965 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩))
9 simpll 527 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐴R)
10 simprl 529 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐶R)
11 mulclsr 7869 . . . . . 6 ((𝐴R𝐶R) → (𝐴 ·R 𝐶) ∈ R)
129, 10, 11syl2anc 411 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐶) ∈ R)
13 m1r 7867 . . . . . 6 -1RR
14 simplr 528 . . . . . . 7 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐵R)
15 simprr 531 . . . . . . 7 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐷R)
16 mulclsr 7869 . . . . . . 7 ((𝐵R𝐷R) → (𝐵 ·R 𝐷) ∈ R)
1714, 15, 16syl2anc 411 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐷) ∈ R)
18 mulclsr 7869 . . . . . 6 ((-1RR ∧ (𝐵 ·R 𝐷) ∈ R) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
1913, 17, 18sylancr 414 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
20 addclsr 7868 . . . . 5 (((𝐴 ·R 𝐶) ∈ R ∧ (-1R ·R (𝐵 ·R 𝐷)) ∈ R) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
2112, 19, 20syl2anc 411 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
22 mulclsr 7869 . . . . . 6 ((𝐵R𝐶R) → (𝐵 ·R 𝐶) ∈ R)
2314, 10, 22syl2anc 411 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐶) ∈ R)
24 mulclsr 7869 . . . . . 6 ((𝐴R𝐷R) → (𝐴 ·R 𝐷) ∈ R)
259, 15, 24syl2anc 411 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐷) ∈ R)
26 addclsr 7868 . . . . 5 (((𝐵 ·R 𝐶) ∈ R ∧ (𝐴 ·R 𝐷) ∈ R) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
2723, 25, 26syl2anc 411 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
28 opelxpi 4708 . . . 4 ((((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R ∧ ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
2921, 27, 28syl2anc 411 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
30 ecidg 6688 . . 3 (⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R) → [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
3129, 30syl 14 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
321, 8, 313eqtr4d 2248 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  cop 3636   E cep 4335   × cxp 4674  ccnv 4675  (class class class)co 5946  [cec 6620  Rcnr 7412  -1Rcm1r 7415   +R cplr 7416   ·R cmr 7417   · cmul 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-2o 6505  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468  df-enq0 7539  df-nq0 7540  df-0nq0 7541  df-plq0 7542  df-mq0 7543  df-inp 7581  df-i1p 7582  df-iplp 7583  df-imp 7584  df-enr 7841  df-nr 7842  df-plr 7843  df-mr 7844  df-m1r 7848  df-c 7933  df-mul 7939
This theorem is referenced by:  axmulcom  7986  axmulass  7988  axdistr  7989
  Copyright terms: Public domain W3C validator