ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsrec GIF version

Theorem mulcnsrec 7837
Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6594, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7835. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
mulcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )

Proof of Theorem mulcnsrec
StepHypRef Expression
1 mulcnsr 7829 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩) = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
2 opelxpi 4656 . . . 4 ((𝐴R𝐵R) → ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 ecidg 6594 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (R × R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
42, 3syl 14 . . 3 ((𝐴R𝐵R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
5 opelxpi 4656 . . . 4 ((𝐶R𝐷R) → ⟨𝐶, 𝐷⟩ ∈ (R × R))
6 ecidg 6594 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (R × R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
75, 6syl 14 . . 3 ((𝐶R𝐷R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
84, 7oveqan12d 5889 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ · ⟨𝐶, 𝐷⟩))
9 simpll 527 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐴R)
10 simprl 529 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐶R)
11 mulclsr 7748 . . . . . 6 ((𝐴R𝐶R) → (𝐴 ·R 𝐶) ∈ R)
129, 10, 11syl2anc 411 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐶) ∈ R)
13 m1r 7746 . . . . . 6 -1RR
14 simplr 528 . . . . . . 7 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐵R)
15 simprr 531 . . . . . . 7 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → 𝐷R)
16 mulclsr 7748 . . . . . . 7 ((𝐵R𝐷R) → (𝐵 ·R 𝐷) ∈ R)
1714, 15, 16syl2anc 411 . . . . . 6 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐷) ∈ R)
18 mulclsr 7748 . . . . . 6 ((-1RR ∧ (𝐵 ·R 𝐷) ∈ R) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
1913, 17, 18sylancr 414 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (-1R ·R (𝐵 ·R 𝐷)) ∈ R)
20 addclsr 7747 . . . . 5 (((𝐴 ·R 𝐶) ∈ R ∧ (-1R ·R (𝐵 ·R 𝐷)) ∈ R) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
2112, 19, 20syl2anc 411 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R)
22 mulclsr 7748 . . . . . 6 ((𝐵R𝐶R) → (𝐵 ·R 𝐶) ∈ R)
2314, 10, 22syl2anc 411 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 ·R 𝐶) ∈ R)
24 mulclsr 7748 . . . . . 6 ((𝐴R𝐷R) → (𝐴 ·R 𝐷) ∈ R)
259, 15, 24syl2anc 411 . . . . 5 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 ·R 𝐷) ∈ R)
26 addclsr 7747 . . . . 5 (((𝐵 ·R 𝐶) ∈ R ∧ (𝐴 ·R 𝐷) ∈ R) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
2723, 25, 26syl2anc 411 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R)
28 opelxpi 4656 . . . 4 ((((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))) ∈ R ∧ ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷)) ∈ R) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
2921, 27, 28syl2anc 411 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R))
30 ecidg 6594 . . 3 (⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩ ∈ (R × R) → [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
3129, 30syl 14 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E = ⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩)
321, 8, 313eqtr4d 2220 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E · [⟨𝐶, 𝐷⟩] E ) = [⟨((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))⟩] E )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cop 3595   E cep 4285   × cxp 4622  ccnv 4623  (class class class)co 5870  [cec 6528  Rcnr 7291  -1Rcm1r 7294   +R cplr 7295   ·R cmr 7296   · cmul 7811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4116  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-iinf 4585
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-eprel 4287  df-id 4291  df-po 4294  df-iso 4295  df-iord 4364  df-on 4366  df-suc 4369  df-iom 4588  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-recs 6301  df-irdg 6366  df-1o 6412  df-2o 6413  df-oadd 6416  df-omul 6417  df-er 6530  df-ec 6532  df-qs 6536  df-ni 7298  df-pli 7299  df-mi 7300  df-lti 7301  df-plpq 7338  df-mpq 7339  df-enq 7341  df-nqqs 7342  df-plqqs 7343  df-mqqs 7344  df-1nqqs 7345  df-rq 7346  df-ltnqqs 7347  df-enq0 7418  df-nq0 7419  df-0nq0 7420  df-plq0 7421  df-mq0 7422  df-inp 7460  df-i1p 7461  df-iplp 7462  df-imp 7463  df-enr 7720  df-nr 7721  df-plr 7722  df-mr 7723  df-m1r 7727  df-c 7812  df-mul 7818
This theorem is referenced by:  axmulcom  7865  axmulass  7867  axdistr  7868
  Copyright terms: Public domain W3C validator