ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemopu GIF version

Theorem caucvgprprlemopu 7455
Description: Lemma for caucvgprpr 7468. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemopu ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑟,𝑠   𝑢,𝐹,𝑟,𝑠   𝐿,𝑠   𝑝,𝑙,𝑞,𝑡,𝑟,𝑠   𝑢,𝑝,𝑞,𝑡   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemopu
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
21caucvgprprlemelu 7442 . . . 4 (𝑡 ∈ (2nd𝐿) ↔ (𝑡Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
32simprbi 271 . . 3 (𝑡 ∈ (2nd𝐿) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
43adantl 273 . 2 ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
5 simprr 504 . . . . 5 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
6 caucvgprpr.f . . . . . . . . 9 (𝜑𝐹:NP)
76ffvelrnda 5509 . . . . . . . 8 ((𝜑𝑏N) → (𝐹𝑏) ∈ P)
8 recnnpr 7304 . . . . . . . . 9 (𝑏N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
98adantl 273 . . . . . . . 8 ((𝜑𝑏N) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
10 addclpr 7293 . . . . . . . 8 (((𝐹𝑏) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
117, 9, 10syl2anc 406 . . . . . . 7 ((𝜑𝑏N) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
1211ad2ant2r 498 . . . . . 6 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
132simplbi 270 . . . . . . . 8 (𝑡 ∈ (2nd𝐿) → 𝑡Q)
1413ad2antlr 478 . . . . . . 7 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → 𝑡Q)
15 nqprlu 7303 . . . . . . 7 (𝑡Q → ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P)
1614, 15syl 14 . . . . . 6 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P)
17 ltdfpr 7262 . . . . . 6 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ↔ ∃𝑠Q (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))))
1812, 16, 17syl2anc 406 . . . . 5 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ↔ ∃𝑠Q (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))))
195, 18mpbid 146 . . . 4 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ∃𝑠Q (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)))
20 simpr 109 . . . . . . . 8 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → 𝑠Q)
2112adantr 272 . . . . . . . 8 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
22 nqpru 7308 . . . . . . . 8 ((𝑠Q ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
2320, 21, 22syl2anc 406 . . . . . . 7 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
24 vex 2660 . . . . . . . . 9 𝑠 ∈ V
25 breq1 3898 . . . . . . . . 9 (𝑝 = 𝑠 → (𝑝 <Q 𝑡𝑠 <Q 𝑡))
26 ltnqex 7305 . . . . . . . . . 10 {𝑝𝑝 <Q 𝑡} ∈ V
27 gtnqex 7306 . . . . . . . . . 10 {𝑞𝑡 <Q 𝑞} ∈ V
2826, 27op1st 5998 . . . . . . . . 9 (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) = {𝑝𝑝 <Q 𝑡}
2924, 25, 28elab2 2801 . . . . . . . 8 (𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) ↔ 𝑠 <Q 𝑡)
3029a1i 9 . . . . . . 7 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → (𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) ↔ 𝑠 <Q 𝑡))
3123, 30anbi12d 462 . . . . . 6 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → ((𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)))
3231biimpd 143 . . . . 5 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → ((𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)))
3332reximdva 2508 . . . 4 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → (∃𝑠Q (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ∃𝑠Q (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)))
3419, 33mpd 13 . . 3 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ∃𝑠Q (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡))
35 simprr 504 . . . . . 6 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → 𝑠 <Q 𝑡)
36 simplr 502 . . . . . . 7 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → 𝑠Q)
37 simplrl 507 . . . . . . . . 9 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → 𝑏N)
3837adantr 272 . . . . . . . 8 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → 𝑏N)
39 simprl 503 . . . . . . . 8 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
40 fveq2 5375 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝐹𝑟) = (𝐹𝑏))
41 opeq1 3671 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑏 → ⟨𝑟, 1o⟩ = ⟨𝑏, 1o⟩)
4241eceq1d 6419 . . . . . . . . . . . . . . 15 (𝑟 = 𝑏 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
4342fveq2d 5379 . . . . . . . . . . . . . 14 (𝑟 = 𝑏 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
4443breq2d 3907 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
4544abbidv 2232 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )})
4643breq1d 3905 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞))
4746abbidv 2232 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞})
4845, 47opeq12d 3679 . . . . . . . . . . 11 (𝑟 = 𝑏 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)
4940, 48oveq12d 5746 . . . . . . . . . 10 (𝑟 = 𝑏 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩))
5049breq1d 3905 . . . . . . . . 9 (𝑟 = 𝑏 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
5150rspcev 2760 . . . . . . . 8 ((𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
5238, 39, 51syl2anc 406 . . . . . . 7 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
531caucvgprprlemelu 7442 . . . . . . 7 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
5436, 52, 53sylanbrc 411 . . . . . 6 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → 𝑠 ∈ (2nd𝐿))
5535, 54jca 302 . . . . 5 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
5655ex 114 . . . 4 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡) → (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿))))
5756reximdva 2508 . . 3 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → (∃𝑠Q (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿))))
5834, 57mpd 13 . 2 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
594, 58rexlimddv 2528 1 ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  {cab 2101  wral 2390  wrex 2391  {crab 2394  cop 3496   class class class wbr 3895  wf 5077  cfv 5081  (class class class)co 5728  1st c1st 5990  2nd c2nd 5991  1oc1o 6260  [cec 6381  Ncnpi 7028   <N clti 7031   ~Q ceq 7035  Qcnq 7036   +Q cplq 7038  *Qcrq 7040   <Q cltq 7041  Pcnp 7047   +P cpp 7049  <P cltp 7051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109  df-enq0 7180  df-nq0 7181  df-0nq0 7182  df-plq0 7183  df-mq0 7184  df-inp 7222  df-iplp 7224  df-iltp 7226
This theorem is referenced by:  caucvgprprlemrnd  7457
  Copyright terms: Public domain W3C validator