ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemopu GIF version

Theorem caucvgprprlemopu 7783
Description: Lemma for caucvgprpr 7796. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemopu ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐹,𝑙,𝑟,𝑠   𝑢,𝐹,𝑟,𝑠   𝐿,𝑠   𝑝,𝑙,𝑞,𝑡,𝑟,𝑠   𝑢,𝑝,𝑞,𝑡   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑞,𝑝)   𝐿(𝑢,𝑡,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemopu
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
21caucvgprprlemelu 7770 . . . 4 (𝑡 ∈ (2nd𝐿) ↔ (𝑡Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))
32simprbi 275 . . 3 (𝑡 ∈ (2nd𝐿) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
43adantl 277 . 2 ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
5 simprr 531 . . . . 5 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)
6 caucvgprpr.f . . . . . . . . 9 (𝜑𝐹:NP)
76ffvelcdmda 5700 . . . . . . . 8 ((𝜑𝑏N) → (𝐹𝑏) ∈ P)
8 recnnpr 7632 . . . . . . . . 9 (𝑏N → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
98adantl 277 . . . . . . . 8 ((𝜑𝑏N) → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
10 addclpr 7621 . . . . . . . 8 (((𝐹𝑏) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
117, 9, 10syl2anc 411 . . . . . . 7 ((𝜑𝑏N) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
1211ad2ant2r 509 . . . . . 6 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
132simplbi 274 . . . . . . . 8 (𝑡 ∈ (2nd𝐿) → 𝑡Q)
1413ad2antlr 489 . . . . . . 7 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → 𝑡Q)
15 nqprlu 7631 . . . . . . 7 (𝑡Q → ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P)
1614, 15syl 14 . . . . . 6 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P)
17 ltdfpr 7590 . . . . . 6 ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P ∧ ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ∈ P) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ↔ ∃𝑠Q (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))))
1812, 16, 17syl2anc 411 . . . . 5 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩ ↔ ∃𝑠Q (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩))))
195, 18mpbid 147 . . . 4 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ∃𝑠Q (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)))
20 simpr 110 . . . . . . . 8 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → 𝑠Q)
2112adantr 276 . . . . . . . 8 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
22 nqpru 7636 . . . . . . . 8 ((𝑠Q ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
2320, 21, 22syl2anc 411 . . . . . . 7 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
24 vex 2766 . . . . . . . . 9 𝑠 ∈ V
25 breq1 4037 . . . . . . . . 9 (𝑝 = 𝑠 → (𝑝 <Q 𝑡𝑠 <Q 𝑡))
26 ltnqex 7633 . . . . . . . . . 10 {𝑝𝑝 <Q 𝑡} ∈ V
27 gtnqex 7634 . . . . . . . . . 10 {𝑞𝑡 <Q 𝑞} ∈ V
2826, 27op1st 6213 . . . . . . . . 9 (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) = {𝑝𝑝 <Q 𝑡}
2924, 25, 28elab2 2912 . . . . . . . 8 (𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) ↔ 𝑠 <Q 𝑡)
3029a1i 9 . . . . . . 7 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → (𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩) ↔ 𝑠 <Q 𝑡))
3123, 30anbi12d 473 . . . . . 6 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → ((𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ↔ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)))
3231biimpd 144 . . . . 5 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → ((𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)))
3332reximdva 2599 . . . 4 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → (∃𝑠Q (𝑠 ∈ (2nd ‘((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)) ∧ 𝑠 ∈ (1st ‘⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ∃𝑠Q (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)))
3419, 33mpd 13 . . 3 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ∃𝑠Q (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡))
35 simprr 531 . . . . . 6 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → 𝑠 <Q 𝑡)
36 simplr 528 . . . . . . 7 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → 𝑠Q)
37 simplrl 535 . . . . . . . . 9 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → 𝑏N)
3837adantr 276 . . . . . . . 8 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → 𝑏N)
39 simprl 529 . . . . . . . 8 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
40 fveq2 5561 . . . . . . . . . . 11 (𝑟 = 𝑏 → (𝐹𝑟) = (𝐹𝑏))
41 opeq1 3809 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑏 → ⟨𝑟, 1o⟩ = ⟨𝑏, 1o⟩)
4241eceq1d 6637 . . . . . . . . . . . . . . 15 (𝑟 = 𝑏 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
4342fveq2d 5565 . . . . . . . . . . . . . 14 (𝑟 = 𝑏 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
4443breq2d 4046 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
4544abbidv 2314 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )})
4643breq1d 4044 . . . . . . . . . . . . 13 (𝑟 = 𝑏 → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞))
4746abbidv 2314 . . . . . . . . . . . 12 (𝑟 = 𝑏 → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞})
4845, 47opeq12d 3817 . . . . . . . . . . 11 (𝑟 = 𝑏 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)
4940, 48oveq12d 5943 . . . . . . . . . 10 (𝑟 = 𝑏 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩))
5049breq1d 4044 . . . . . . . . 9 (𝑟 = 𝑏 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ↔ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
5150rspcev 2868 . . . . . . . 8 ((𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
5238, 39, 51syl2anc 411 . . . . . . 7 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
531caucvgprprlemelu 7770 . . . . . . 7 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
5436, 52, 53sylanbrc 417 . . . . . 6 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → 𝑠 ∈ (2nd𝐿))
5535, 54jca 306 . . . . 5 (((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) ∧ (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡)) → (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
5655ex 115 . . . 4 ((((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) ∧ 𝑠Q) → ((((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡) → (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿))))
5756reximdva 2599 . . 3 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → (∃𝑠Q (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩ ∧ 𝑠 <Q 𝑡) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿))))
5834, 57mpd 13 . 2 (((𝜑𝑡 ∈ (2nd𝐿)) ∧ (𝑏N ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑡}, {𝑞𝑡 <Q 𝑞}⟩)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
594, 58rexlimddv 2619 1 ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  {crab 2479  cop 3626   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925  1st c1st 6205  2nd c2nd 6206  1oc1o 6476  [cec 6599  Ncnpi 7356   <N clti 7359   ~Q ceq 7363  Qcnq 7364   +Q cplq 7366  *Qcrq 7368   <Q cltq 7369  Pcnp 7375   +P cpp 7377  <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  caucvgprprlemrnd  7785
  Copyright terms: Public domain W3C validator