| Step | Hyp | Ref
 | Expression | 
| 1 |   | prop 7542 | 
. . 3
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 2 |   | prmu 7545 | 
. . 3
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑧 ∈
Q 𝑧 ∈
(2nd ‘𝐴)) | 
| 3 | 1, 2 | syl 14 | 
. 2
⊢ (𝐴 ∈ P →
∃𝑧 ∈
Q 𝑧 ∈
(2nd ‘𝐴)) | 
| 4 |   | archnqq 7484 | 
. . . 4
⊢ (𝑧 ∈ Q →
∃𝑥 ∈
N 𝑧
<Q [〈𝑥, 1o〉]
~Q ) | 
| 5 | 4 | ad2antrl 490 | 
. . 3
⊢ ((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
→ ∃𝑥 ∈
N 𝑧
<Q [〈𝑥, 1o〉]
~Q ) | 
| 6 |   | simprl 529 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
→ 𝑧 ∈
Q) | 
| 7 | 6 | ad2antrr 488 | 
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → 𝑧 ∈ Q) | 
| 8 |   | simprr 531 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
→ 𝑧 ∈
(2nd ‘𝐴)) | 
| 9 | 8 | ad2antrr 488 | 
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → 𝑧 ∈ (2nd ‘𝐴)) | 
| 10 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → 𝑧 <Q [〈𝑥, 1o〉]
~Q ) | 
| 11 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑧 ∈ V | 
| 12 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑙 = 𝑧 → (𝑙 <Q [〈𝑥, 1o〉]
~Q ↔ 𝑧 <Q [〈𝑥, 1o〉]
~Q )) | 
| 13 |   | ltnqex 7616 | 
. . . . . . . . . 10
⊢ {𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q } ∈ V | 
| 14 |   | gtnqex 7617 | 
. . . . . . . . . 10
⊢ {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢} ∈ V | 
| 15 | 13, 14 | op1st 6204 | 
. . . . . . . . 9
⊢
(1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) = {𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q } | 
| 16 | 11, 12, 15 | elab2 2912 | 
. . . . . . . 8
⊢ (𝑧 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) ↔ 𝑧 <Q [〈𝑥, 1o〉]
~Q ) | 
| 17 | 10, 16 | sylibr 134 | 
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → 𝑧 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉)) | 
| 18 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 ∈ (2nd ‘𝐴) ↔ 𝑧 ∈ (2nd ‘𝐴))) | 
| 19 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) ↔ 𝑧 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉))) | 
| 20 | 18, 19 | anbi12d 473 | 
. . . . . . . 8
⊢ (𝑤 = 𝑧 → ((𝑤 ∈ (2nd ‘𝐴) ∧ 𝑤 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉)) ↔ (𝑧 ∈ (2nd ‘𝐴) ∧ 𝑧 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉)))) | 
| 21 | 20 | rspcev 2868 | 
. . . . . . 7
⊢ ((𝑧 ∈ Q ∧
(𝑧 ∈ (2nd
‘𝐴) ∧ 𝑧 ∈ (1st
‘〈{𝑙 ∣
𝑙
<Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉))) → ∃𝑤 ∈ Q (𝑤 ∈ (2nd ‘𝐴) ∧ 𝑤 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉))) | 
| 22 | 7, 9, 17, 21 | syl12anc 1247 | 
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → ∃𝑤 ∈ Q (𝑤 ∈ (2nd ‘𝐴) ∧ 𝑤 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉))) | 
| 23 |   | simplll 533 | 
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → 𝐴 ∈ P) | 
| 24 |   | nnprlu 7620 | 
. . . . . . . 8
⊢ (𝑥 ∈ N →
〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ∈
P) | 
| 25 | 24 | ad2antlr 489 | 
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ∈
P) | 
| 26 |   | ltdfpr 7573 | 
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ∈ P) → (𝐴<P
〈{𝑙 ∣ 𝑙 <Q
[〈𝑥,
1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ↔ ∃𝑤 ∈ Q (𝑤 ∈ (2nd ‘𝐴) ∧ 𝑤 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉)))) | 
| 27 | 23, 25, 26 | syl2anc 411 | 
. . . . . 6
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → (𝐴<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉 ↔ ∃𝑤 ∈ Q (𝑤 ∈ (2nd ‘𝐴) ∧ 𝑤 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉)))) | 
| 28 | 22, 27 | mpbird 167 | 
. . . . 5
⊢ ((((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) ∧ 𝑧
<Q [〈𝑥, 1o〉]
~Q ) → 𝐴<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) | 
| 29 | 28 | ex 115 | 
. . . 4
⊢ (((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
∧ 𝑥 ∈
N) → (𝑧
<Q [〈𝑥, 1o〉]
~Q → 𝐴<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉)) | 
| 30 | 29 | reximdva 2599 | 
. . 3
⊢ ((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
→ (∃𝑥 ∈
N 𝑧
<Q [〈𝑥, 1o〉]
~Q → ∃𝑥 ∈ N 𝐴<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉)) | 
| 31 | 5, 30 | mpd 13 | 
. 2
⊢ ((𝐴 ∈ P ∧
(𝑧 ∈ Q
∧ 𝑧 ∈
(2nd ‘𝐴)))
→ ∃𝑥 ∈
N 𝐴<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) | 
| 32 | 3, 31 | rexlimddv 2619 | 
1
⊢ (𝐴 ∈ P →
∃𝑥 ∈
N 𝐴<P 〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉]
~Q }, {𝑢 ∣ [〈𝑥, 1o〉]
~Q <Q 𝑢}〉) |