ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archpr GIF version

Theorem archpr 7727
Description: For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer 𝑥 is embedded into the reals as described at nnprlu 7637. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
archpr (𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
Distinct variable group:   𝐴,𝑙,𝑢,𝑥

Proof of Theorem archpr
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7559 . . 3 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7562 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑧Q 𝑧 ∈ (2nd𝐴))
31, 2syl 14 . 2 (𝐴P → ∃𝑧Q 𝑧 ∈ (2nd𝐴))
4 archnqq 7501 . . . 4 (𝑧Q → ∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
54ad2antrl 490 . . 3 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → ∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
6 simprl 529 . . . . . . . 8 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → 𝑧Q)
76ad2antrr 488 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧Q)
8 simprr 531 . . . . . . . 8 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → 𝑧 ∈ (2nd𝐴))
98ad2antrr 488 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 ∈ (2nd𝐴))
10 simpr 110 . . . . . . . 8 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
11 vex 2766 . . . . . . . . 9 𝑧 ∈ V
12 breq1 4037 . . . . . . . . 9 (𝑙 = 𝑧 → (𝑙 <Q [⟨𝑥, 1o⟩] ~Q𝑧 <Q [⟨𝑥, 1o⟩] ~Q ))
13 ltnqex 7633 . . . . . . . . . 10 {𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q } ∈ V
14 gtnqex 7634 . . . . . . . . . 10 {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢} ∈ V
1513, 14op1st 6213 . . . . . . . . 9 (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) = {𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }
1611, 12, 15elab2 2912 . . . . . . . 8 (𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) ↔ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
1710, 16sylibr 134 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
18 eleq1 2259 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ (2nd𝐴) ↔ 𝑧 ∈ (2nd𝐴)))
19 eleq1 2259 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) ↔ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
2018, 19anbi12d 473 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)) ↔ (𝑧 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2120rspcev 2868 . . . . . . 7 ((𝑧Q ∧ (𝑧 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))) → ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
227, 9, 17, 21syl12anc 1247 . . . . . 6 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
23 simplll 533 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝐴P)
24 nnprlu 7637 . . . . . . . 8 (𝑥N → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
2524ad2antlr 489 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
26 ltdfpr 7590 . . . . . . 7 ((𝐴P ∧ ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P) → (𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ↔ ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2723, 25, 26syl2anc 411 . . . . . 6 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → (𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ↔ ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2822, 27mpbird 167 . . . . 5 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
2928ex 115 . . . 4 (((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) → (𝑧 <Q [⟨𝑥, 1o⟩] ~Q𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
3029reximdva 2599 . . 3 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → (∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
315, 30mpd 13 . 2 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
323, 31rexlimddv 2619 1 (𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  {cab 2182  wrex 2476  cop 3626   class class class wbr 4034  cfv 5259  1st c1st 6205  2nd c2nd 6206  1oc1o 6476  [cec 6599  Ncnpi 7356   ~Q ceq 7363  Qcnq 7364   <Q cltq 7369  Pcnp 7375  <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-inp 7550  df-iltp 7554
This theorem is referenced by:  archsr  7866
  Copyright terms: Public domain W3C validator