Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  archpr GIF version

Theorem archpr 7465
 Description: For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer 𝑥 is embedded into the reals as described at nnprlu 7375. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
archpr (𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
Distinct variable group:   𝐴,𝑙,𝑢,𝑥

Proof of Theorem archpr
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7297 . . 3 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7300 . . 3 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑧Q 𝑧 ∈ (2nd𝐴))
31, 2syl 14 . 2 (𝐴P → ∃𝑧Q 𝑧 ∈ (2nd𝐴))
4 archnqq 7239 . . . 4 (𝑧Q → ∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
54ad2antrl 481 . . 3 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → ∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
6 simprl 520 . . . . . . . 8 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → 𝑧Q)
76ad2antrr 479 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧Q)
8 simprr 521 . . . . . . . 8 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → 𝑧 ∈ (2nd𝐴))
98ad2antrr 479 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 ∈ (2nd𝐴))
10 simpr 109 . . . . . . . 8 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
11 vex 2689 . . . . . . . . 9 𝑧 ∈ V
12 breq1 3932 . . . . . . . . 9 (𝑙 = 𝑧 → (𝑙 <Q [⟨𝑥, 1o⟩] ~Q𝑧 <Q [⟨𝑥, 1o⟩] ~Q ))
13 ltnqex 7371 . . . . . . . . . 10 {𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q } ∈ V
14 gtnqex 7372 . . . . . . . . . 10 {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢} ∈ V
1513, 14op1st 6044 . . . . . . . . 9 (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) = {𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }
1611, 12, 15elab2 2832 . . . . . . . 8 (𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) ↔ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q )
1710, 16sylibr 133 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
18 eleq1 2202 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ (2nd𝐴) ↔ 𝑧 ∈ (2nd𝐴)))
19 eleq1 2202 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩) ↔ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
2018, 19anbi12d 464 . . . . . . . 8 (𝑤 = 𝑧 → ((𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)) ↔ (𝑧 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2120rspcev 2789 . . . . . . 7 ((𝑧Q ∧ (𝑧 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))) → ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
227, 9, 17, 21syl12anc 1214 . . . . . 6 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)))
23 simplll 522 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝐴P)
24 nnprlu 7375 . . . . . . . 8 (𝑥N → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
2524ad2antlr 480 . . . . . . 7 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
26 ltdfpr 7328 . . . . . . 7 ((𝐴P ∧ ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P) → (𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ↔ ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2723, 25, 26syl2anc 408 . . . . . 6 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → (𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩ ↔ ∃𝑤Q (𝑤 ∈ (2nd𝐴) ∧ 𝑤 ∈ (1st ‘⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))))
2822, 27mpbird 166 . . . . 5 ((((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) ∧ 𝑧 <Q [⟨𝑥, 1o⟩] ~Q ) → 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
2928ex 114 . . . 4 (((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) ∧ 𝑥N) → (𝑧 <Q [⟨𝑥, 1o⟩] ~Q𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
3029reximdva 2534 . . 3 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → (∃𝑥N 𝑧 <Q [⟨𝑥, 1o⟩] ~Q → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩))
315, 30mpd 13 . 2 ((𝐴P ∧ (𝑧Q𝑧 ∈ (2nd𝐴))) → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
323, 31rexlimddv 2554 1 (𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1o⟩] ~Q <Q 𝑢}⟩)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∈ wcel 1480  {cab 2125  ∃wrex 2417  ⟨cop 3530   class class class wbr 3929  ‘cfv 5123  1st c1st 6036  2nd c2nd 6037  1oc1o 6306  [cec 6427  Ncnpi 7094   ~Q ceq 7101  Qcnq 7102
 Copyright terms: Public domain W3C validator