![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltnqpr | GIF version |
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 19-Jun-2021.) |
Ref | Expression |
---|---|
ltnqpr | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltbtwnnqq 7416 | . 2 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | |
2 | nqprlu 7548 | . . . 4 ⊢ (𝐴 ∈ Q → ⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩ ∈ P) | |
3 | nqprlu 7548 | . . . 4 ⊢ (𝐵 ∈ Q → ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ∈ P) | |
4 | ltdfpr 7507 | . . . 4 ⊢ ((⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)))) | |
5 | 2, 3, 4 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)))) |
6 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | breq2 4009 | . . . . . 6 ⊢ (𝑢 = 𝑥 → (𝐴 <Q 𝑢 ↔ 𝐴 <Q 𝑥)) | |
8 | ltnqex 7550 | . . . . . . 7 ⊢ {𝑙 ∣ 𝑙 <Q 𝐴} ∈ V | |
9 | gtnqex 7551 | . . . . . . 7 ⊢ {𝑢 ∣ 𝐴 <Q 𝑢} ∈ V | |
10 | 8, 9 | op2nd 6150 | . . . . . 6 ⊢ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) = {𝑢 ∣ 𝐴 <Q 𝑢} |
11 | 6, 7, 10 | elab2 2887 | . . . . 5 ⊢ (𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑥) |
12 | breq1 4008 | . . . . . 6 ⊢ (𝑙 = 𝑥 → (𝑙 <Q 𝐵 ↔ 𝑥 <Q 𝐵)) | |
13 | ltnqex 7550 | . . . . . . 7 ⊢ {𝑙 ∣ 𝑙 <Q 𝐵} ∈ V | |
14 | gtnqex 7551 | . . . . . . 7 ⊢ {𝑢 ∣ 𝐵 <Q 𝑢} ∈ V | |
15 | 13, 14 | op1st 6149 | . . . . . 6 ⊢ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩) = {𝑙 ∣ 𝑙 <Q 𝐵} |
16 | 6, 12, 15 | elab2 2887 | . . . . 5 ⊢ (𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐵) |
17 | 11, 16 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)) ↔ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
18 | 17 | rexbii 2484 | . . 3 ⊢ (∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)) ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
19 | 5, 18 | bitrdi 196 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
20 | 1, 19 | bitr4id 199 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 {cab 2163 ∃wrex 2456 ⟨cop 3597 class class class wbr 4005 ‘cfv 5218 1st c1st 6141 2nd c2nd 6142 Qcnq 7281 <Q cltq 7286 Pcnp 7292 <P cltp 7296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-inp 7467 df-iltp 7471 |
This theorem is referenced by: prplnqu 7621 ltrennb 7855 |
Copyright terms: Public domain | W3C validator |