ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnqpr GIF version

Theorem ltnqpr 7544
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
Assertion
Ref Expression
ltnqpr ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑙   𝑢,𝐴   𝐵,𝑙   𝑢,𝐵

Proof of Theorem ltnqpr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltbtwnnqq 7366 . 2 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2 nqprlu 7498 . . . 4 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
3 nqprlu 7498 . . . 4 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
4 ltdfpr 7457 . . . 4 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
52, 3, 4syl2an 287 . . 3 ((𝐴Q𝐵Q) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
6 vex 2733 . . . . . 6 𝑥 ∈ V
7 breq2 3991 . . . . . 6 (𝑢 = 𝑥 → (𝐴 <Q 𝑢𝐴 <Q 𝑥))
8 ltnqex 7500 . . . . . . 7 {𝑙𝑙 <Q 𝐴} ∈ V
9 gtnqex 7501 . . . . . . 7 {𝑢𝐴 <Q 𝑢} ∈ V
108, 9op2nd 6124 . . . . . 6 (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑢𝐴 <Q 𝑢}
116, 7, 10elab2 2878 . . . . 5 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑥)
12 breq1 3990 . . . . . 6 (𝑙 = 𝑥 → (𝑙 <Q 𝐵𝑥 <Q 𝐵))
13 ltnqex 7500 . . . . . . 7 {𝑙𝑙 <Q 𝐵} ∈ V
14 gtnqex 7501 . . . . . . 7 {𝑢𝐵 <Q 𝑢} ∈ V
1513, 14op1st 6123 . . . . . 6 (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐵}
166, 12, 15elab2 2878 . . . . 5 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐵)
1711, 16anbi12i 457 . . . 4 ((𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ (𝐴 <Q 𝑥𝑥 <Q 𝐵))
1817rexbii 2477 . . 3 (∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
195, 18bitrdi 195 . 2 ((𝐴Q𝐵Q) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
201, 19bitr4id 198 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  {cab 2156  wrex 2449  cop 3584   class class class wbr 3987  cfv 5196  1st c1st 6115  2nd c2nd 6116  Qcnq 7231   <Q cltq 7236  Pcnp 7242  <P cltp 7246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-1o 6393  df-oadd 6397  df-omul 6398  df-er 6510  df-ec 6512  df-qs 6516  df-ni 7255  df-pli 7256  df-mi 7257  df-lti 7258  df-plpq 7295  df-mpq 7296  df-enq 7298  df-nqqs 7299  df-plqqs 7300  df-mqqs 7301  df-1nqqs 7302  df-rq 7303  df-ltnqqs 7304  df-inp 7417  df-iltp 7421
This theorem is referenced by:  prplnqu  7571  ltrennb  7805
  Copyright terms: Public domain W3C validator