Step | Hyp | Ref
| Expression |
1 | | caofref.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | | caofinv.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁:𝑆⟶𝑆) |
3 | 2 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑁:𝑆⟶𝑆) |
4 | | caofref.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
5 | 4 | ffvelrnda 5620 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ 𝑆) |
6 | 3, 5 | ffvelrnd 5621 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑁‘(𝐹‘𝑣)) ∈ 𝑆) |
7 | | eqid 2165 |
. . . . . . 7
⊢ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) |
8 | 6, 7 | fmptd 5639 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))):𝐴⟶𝑆) |
9 | | caofinv.5 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))) |
10 | 9 | feq1d 5324 |
. . . . . 6
⊢ (𝜑 → (𝐺:𝐴⟶𝑆 ↔ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))):𝐴⟶𝑆)) |
11 | 8, 10 | mpbird 166 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
12 | 11 | ffvelrnda 5620 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
13 | 4 | ffvelrnda 5620 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
14 | 6 | ralrimiva 2539 |
. . . . . . 7
⊢ (𝜑 → ∀𝑣 ∈ 𝐴 (𝑁‘(𝐹‘𝑣)) ∈ 𝑆) |
15 | 7 | fnmpt 5314 |
. . . . . . 7
⊢
(∀𝑣 ∈
𝐴 (𝑁‘(𝐹‘𝑣)) ∈ 𝑆 → (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) Fn 𝐴) |
16 | 14, 15 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) Fn 𝐴) |
17 | 9 | fneq1d 5278 |
. . . . . 6
⊢ (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) Fn 𝐴)) |
18 | 16, 17 | mpbird 166 |
. . . . 5
⊢ (𝜑 → 𝐺 Fn 𝐴) |
19 | | dffn5im 5532 |
. . . . 5
⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
20 | 18, 19 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
21 | 4 | feqmptd 5539 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
22 | 1, 12, 13, 20, 21 | offval2 6065 |
. . 3
⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) |
23 | 9 | fveq1d 5488 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑤) = ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤)) |
24 | 23 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤)) |
25 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) |
26 | 2 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑁:𝑆⟶𝑆) |
27 | 26, 13 | ffvelrnd 5621 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑁‘(𝐹‘𝑤)) ∈ 𝑆) |
28 | | fveq2 5486 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑤 → (𝐹‘𝑣) = (𝐹‘𝑤)) |
29 | 28 | fveq2d 5490 |
. . . . . . . . 9
⊢ (𝑣 = 𝑤 → (𝑁‘(𝐹‘𝑣)) = (𝑁‘(𝐹‘𝑤))) |
30 | 29, 7 | fvmptg 5562 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐴 ∧ (𝑁‘(𝐹‘𝑤)) ∈ 𝑆) → ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤) = (𝑁‘(𝐹‘𝑤))) |
31 | 25, 27, 30 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤) = (𝑁‘(𝐹‘𝑤))) |
32 | 24, 31 | eqtrd 2198 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝑁‘(𝐹‘𝑤))) |
33 | 32 | oveq1d 5857 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐹‘𝑤)) = ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤))) |
34 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → (𝑁‘𝑥) = (𝑁‘(𝐹‘𝑤))) |
35 | | id 19 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) |
36 | 34, 35 | oveq12d 5860 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → ((𝑁‘𝑥)𝑅𝑥) = ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤))) |
37 | 36 | eqeq1d 2174 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑤) → (((𝑁‘𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤)) = 𝐵)) |
38 | | caofinvl.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑁‘𝑥)𝑅𝑥) = 𝐵) |
39 | 38 | ralrimiva 2539 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ((𝑁‘𝑥)𝑅𝑥) = 𝐵) |
40 | 39 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ((𝑁‘𝑥)𝑅𝑥) = 𝐵) |
41 | 37, 40, 13 | rspcdva 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤)) = 𝐵) |
42 | 33, 41 | eqtrd 2198 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐹‘𝑤)) = 𝐵) |
43 | 42 | mpteq2dva 4072 |
. . 3
⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) = (𝑤 ∈ 𝐴 ↦ 𝐵)) |
44 | 22, 43 | eqtrd 2198 |
. 2
⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ 𝐵)) |
45 | | fconstmpt 4651 |
. 2
⊢ (𝐴 × {𝐵}) = (𝑤 ∈ 𝐴 ↦ 𝐵) |
46 | 44, 45 | eqtr4di 2217 |
1
⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝐴 × {𝐵})) |