| Step | Hyp | Ref
 | Expression | 
| 1 |   | caofref.1 | 
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 2 |   | caofinv.4 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑁:𝑆⟶𝑆) | 
| 3 | 2 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑁:𝑆⟶𝑆) | 
| 4 |   | caofref.2 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | 
| 5 | 4 | ffvelcdmda 5697 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝐹‘𝑣) ∈ 𝑆) | 
| 6 | 3, 5 | ffvelcdmd 5698 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑁‘(𝐹‘𝑣)) ∈ 𝑆) | 
| 7 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) | 
| 8 | 6, 7 | fmptd 5716 | 
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))):𝐴⟶𝑆) | 
| 9 |   | caofinv.5 | 
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))) | 
| 10 | 9 | feq1d 5394 | 
. . . . . 6
⊢ (𝜑 → (𝐺:𝐴⟶𝑆 ↔ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))):𝐴⟶𝑆)) | 
| 11 | 8, 10 | mpbird 167 | 
. . . . 5
⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | 
| 12 | 11 | ffvelcdmda 5697 | 
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) | 
| 13 | 4 | ffvelcdmda 5697 | 
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) | 
| 14 | 6 | ralrimiva 2570 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑣 ∈ 𝐴 (𝑁‘(𝐹‘𝑣)) ∈ 𝑆) | 
| 15 | 7 | fnmpt 5384 | 
. . . . . . 7
⊢
(∀𝑣 ∈
𝐴 (𝑁‘(𝐹‘𝑣)) ∈ 𝑆 → (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) Fn 𝐴) | 
| 16 | 14, 15 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) Fn 𝐴) | 
| 17 | 9 | fneq1d 5348 | 
. . . . . 6
⊢ (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣))) Fn 𝐴)) | 
| 18 | 16, 17 | mpbird 167 | 
. . . . 5
⊢ (𝜑 → 𝐺 Fn 𝐴) | 
| 19 |   | dffn5im 5606 | 
. . . . 5
⊢ (𝐺 Fn 𝐴 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) | 
| 20 | 18, 19 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) | 
| 21 | 4 | feqmptd 5614 | 
. . . 4
⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) | 
| 22 | 1, 12, 13, 20, 21 | offval2 6151 | 
. . 3
⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤)))) | 
| 23 | 9 | fveq1d 5560 | 
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑤) = ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤)) | 
| 24 | 23 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤)) | 
| 25 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ 𝐴) | 
| 26 | 2 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → 𝑁:𝑆⟶𝑆) | 
| 27 | 26, 13 | ffvelcdmd 5698 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝑁‘(𝐹‘𝑤)) ∈ 𝑆) | 
| 28 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑣 = 𝑤 → (𝐹‘𝑣) = (𝐹‘𝑤)) | 
| 29 | 28 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (𝑣 = 𝑤 → (𝑁‘(𝐹‘𝑣)) = (𝑁‘(𝐹‘𝑤))) | 
| 30 | 29, 7 | fvmptg 5637 | 
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐴 ∧ (𝑁‘(𝐹‘𝑤)) ∈ 𝑆) → ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤) = (𝑁‘(𝐹‘𝑤))) | 
| 31 | 25, 27, 30 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑣 ∈ 𝐴 ↦ (𝑁‘(𝐹‘𝑣)))‘𝑤) = (𝑁‘(𝐹‘𝑤))) | 
| 32 | 24, 31 | eqtrd 2229 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) = (𝑁‘(𝐹‘𝑤))) | 
| 33 | 32 | oveq1d 5937 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐹‘𝑤)) = ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤))) | 
| 34 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → (𝑁‘𝑥) = (𝑁‘(𝐹‘𝑤))) | 
| 35 |   | id 19 | 
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | 
| 36 | 34, 35 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑤) → ((𝑁‘𝑥)𝑅𝑥) = ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤))) | 
| 37 | 36 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑤) → (((𝑁‘𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤)) = 𝐵)) | 
| 38 |   | caofinvl.6 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑁‘𝑥)𝑅𝑥) = 𝐵) | 
| 39 | 38 | ralrimiva 2570 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ((𝑁‘𝑥)𝑅𝑥) = 𝐵) | 
| 40 | 39 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ((𝑁‘𝑥)𝑅𝑥) = 𝐵) | 
| 41 | 37, 40, 13 | rspcdva 2873 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑁‘(𝐹‘𝑤))𝑅(𝐹‘𝑤)) = 𝐵) | 
| 42 | 33, 41 | eqtrd 2229 | 
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐹‘𝑤)) = 𝐵) | 
| 43 | 42 | mpteq2dva 4123 | 
. . 3
⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐹‘𝑤))) = (𝑤 ∈ 𝐴 ↦ 𝐵)) | 
| 44 | 22, 43 | eqtrd 2229 | 
. 2
⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝑤 ∈ 𝐴 ↦ 𝐵)) | 
| 45 |   | fconstmpt 4710 | 
. 2
⊢ (𝐴 × {𝐵}) = (𝑤 ∈ 𝐴 ↦ 𝐵) | 
| 46 | 44, 45 | eqtr4di 2247 | 
1
⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐹) = (𝐴 × {𝐵})) |