ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofinvl GIF version

Theorem caofinvl 6165
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofinv.3 (𝜑𝐵𝑊)
caofinv.4 (𝜑𝑁:𝑆𝑆)
caofinv.5 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
caofinvl.6 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
Assertion
Ref Expression
caofinvl (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑣,𝐴   𝑣,𝐹,𝑥   𝑥,𝑁,𝑣   𝑣,𝑆   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑣)   𝑅(𝑣)   𝐺(𝑣)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem caofinvl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4 (𝜑𝐴𝑉)
2 caofinv.4 . . . . . . . . 9 (𝜑𝑁:𝑆𝑆)
32adantr 276 . . . . . . . 8 ((𝜑𝑣𝐴) → 𝑁:𝑆𝑆)
4 caofref.2 . . . . . . . . 9 (𝜑𝐹:𝐴𝑆)
54ffvelcdmda 5700 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ 𝑆)
63, 5ffvelcdmd 5701 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑁‘(𝐹𝑣)) ∈ 𝑆)
7 eqid 2196 . . . . . . 7 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))
86, 7fmptd 5719 . . . . . 6 (𝜑 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆)
9 caofinv.5 . . . . . . 7 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
109feq1d 5397 . . . . . 6 (𝜑 → (𝐺:𝐴𝑆 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆))
118, 10mpbird 167 . . . . 5 (𝜑𝐺:𝐴𝑆)
1211ffvelcdmda 5700 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
134ffvelcdmda 5700 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
146ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑣𝐴 (𝑁‘(𝐹𝑣)) ∈ 𝑆)
157fnmpt 5387 . . . . . . 7 (∀𝑣𝐴 (𝑁‘(𝐹𝑣)) ∈ 𝑆 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴)
1614, 15syl 14 . . . . . 6 (𝜑 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴)
179fneq1d 5349 . . . . . 6 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴))
1816, 17mpbird 167 . . . . 5 (𝜑𝐺 Fn 𝐴)
19 dffn5im 5609 . . . . 5 (𝐺 Fn 𝐴𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
2018, 19syl 14 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
214feqmptd 5617 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
221, 12, 13, 20, 21offval2 6155 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
239fveq1d 5563 . . . . . . . 8 (𝜑 → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
2423adantr 276 . . . . . . 7 ((𝜑𝑤𝐴) → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
25 simpr 110 . . . . . . . 8 ((𝜑𝑤𝐴) → 𝑤𝐴)
262adantr 276 . . . . . . . . 9 ((𝜑𝑤𝐴) → 𝑁:𝑆𝑆)
2726, 13ffvelcdmd 5701 . . . . . . . 8 ((𝜑𝑤𝐴) → (𝑁‘(𝐹𝑤)) ∈ 𝑆)
28 fveq2 5561 . . . . . . . . . 10 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
2928fveq2d 5565 . . . . . . . . 9 (𝑣 = 𝑤 → (𝑁‘(𝐹𝑣)) = (𝑁‘(𝐹𝑤)))
3029, 7fvmptg 5640 . . . . . . . 8 ((𝑤𝐴 ∧ (𝑁‘(𝐹𝑤)) ∈ 𝑆) → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
3125, 27, 30syl2anc 411 . . . . . . 7 ((𝜑𝑤𝐴) → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
3224, 31eqtrd 2229 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝑁‘(𝐹𝑤)))
3332oveq1d 5940 . . . . 5 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
34 fveq2 5561 . . . . . . . 8 (𝑥 = (𝐹𝑤) → (𝑁𝑥) = (𝑁‘(𝐹𝑤)))
35 id 19 . . . . . . . 8 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
3634, 35oveq12d 5943 . . . . . . 7 (𝑥 = (𝐹𝑤) → ((𝑁𝑥)𝑅𝑥) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
3736eqeq1d 2205 . . . . . 6 (𝑥 = (𝐹𝑤) → (((𝑁𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵))
38 caofinvl.6 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
3938ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
4039adantr 276 . . . . . 6 ((𝜑𝑤𝐴) → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
4137, 40, 13rspcdva 2873 . . . . 5 ((𝜑𝑤𝐴) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
4233, 41eqtrd 2229 . . . 4 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = 𝐵)
4342mpteq2dva 4124 . . 3 (𝜑 → (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))) = (𝑤𝐴𝐵))
4422, 43eqtrd 2229 . 2 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴𝐵))
45 fconstmpt 4711 . 2 (𝐴 × {𝐵}) = (𝑤𝐴𝐵)
4644, 45eqtr4di 2247 1 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  {csn 3623  cmpt 4095   × cxp 4662   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  𝑓 cof 6137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator