Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvexp2 | GIF version |
Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvexp2 | ⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9137 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | dvexp 13469 | . . . 4 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | |
3 | nnne0 8906 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
4 | 3 | neneqd 2361 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
5 | 4 | iffalsed 3536 | . . . . 5 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
6 | 5 | mpteq2dv 4080 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
7 | 2, 6 | eqtr4d 2206 | . . 3 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
8 | oveq2 5861 | . . . . . . . . . 10 ⊢ (𝑁 = 0 → (𝑥↑𝑁) = (𝑥↑0)) | |
9 | exp0 10480 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
10 | 8, 9 | sylan9eq 2223 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ 𝑥 ∈ ℂ) → (𝑥↑𝑁) = 1) |
11 | 10 | mpteq2dva 4079 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ 1)) |
12 | fconstmpt 4658 | . . . . . . . 8 ⊢ (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1) | |
13 | 11, 12 | eqtr4di 2221 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (ℂ × {1})) |
14 | 13 | oveq2d 5869 | . . . . . 6 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (ℂ D (ℂ × {1}))) |
15 | ax-1cn 7867 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | dvconst 13455 | . . . . . . 7 ⊢ (1 ∈ ℂ → (ℂ D (ℂ × {1})) = (ℂ × {0})) | |
17 | 15, 16 | ax-mp 5 | . . . . . 6 ⊢ (ℂ D (ℂ × {1})) = (ℂ × {0}) |
18 | 14, 17 | eqtrdi 2219 | . . . . 5 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (ℂ × {0})) |
19 | fconstmpt 4658 | . . . . 5 ⊢ (ℂ × {0}) = (𝑥 ∈ ℂ ↦ 0) | |
20 | 18, 19 | eqtrdi 2219 | . . . 4 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ 0)) |
21 | iftrue 3531 | . . . . 5 ⊢ (𝑁 = 0 → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = 0) | |
22 | 21 | mpteq2dv 4080 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ 0)) |
23 | 20, 22 | eqtr4d 2206 | . . 3 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
24 | 7, 23 | jaoi 711 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
25 | 1, 24 | sylbi 120 | 1 ⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ifcif 3526 {csn 3583 ↦ cmpt 4050 × cxp 4609 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 · cmul 7779 − cmin 8090 ℕcn 8878 ℕ0cn0 9135 ↑cexp 10475 D cdv 13418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 ax-addf 7896 ax-mulf 7897 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-pm 6629 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-ntr 12890 df-cn 12982 df-cnp 12983 df-tx 13047 df-cncf 13352 df-limced 13419 df-dvap 13420 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |