ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvexp2 GIF version

Theorem dvexp2 12834
Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp2 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp2
StepHypRef Expression
1 elnn0 8972 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 dvexp 12833 . . . 4 (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
3 nnne0 8741 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
43neneqd 2327 . . . . . 6 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
54iffalsed 3479 . . . . 5 (𝑁 ∈ ℕ → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
65mpteq2dv 4014 . . . 4 (𝑁 ∈ ℕ → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
72, 6eqtr4d 2173 . . 3 (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
8 oveq2 5775 . . . . . . . . . 10 (𝑁 = 0 → (𝑥𝑁) = (𝑥↑0))
9 exp0 10290 . . . . . . . . . 10 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
108, 9sylan9eq 2190 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑥 ∈ ℂ) → (𝑥𝑁) = 1)
1110mpteq2dva 4013 . . . . . . . 8 (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (𝑥 ∈ ℂ ↦ 1))
12 fconstmpt 4581 . . . . . . . 8 (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1)
1311, 12syl6eqr 2188 . . . . . . 7 (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (ℂ × {1}))
1413oveq2d 5783 . . . . . 6 (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (ℂ D (ℂ × {1})))
15 ax-1cn 7706 . . . . . . 7 1 ∈ ℂ
16 dvconst 12819 . . . . . . 7 (1 ∈ ℂ → (ℂ D (ℂ × {1})) = (ℂ × {0}))
1715, 16ax-mp 5 . . . . . 6 (ℂ D (ℂ × {1})) = (ℂ × {0})
1814, 17syl6eq 2186 . . . . 5 (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (ℂ × {0}))
19 fconstmpt 4581 . . . . 5 (ℂ × {0}) = (𝑥 ∈ ℂ ↦ 0)
2018, 19syl6eq 2186 . . . 4 (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ 0))
21 iftrue 3474 . . . . 5 (𝑁 = 0 → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = 0)
2221mpteq2dv 4014 . . . 4 (𝑁 = 0 → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ 0))
2320, 22eqtr4d 2173 . . 3 (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
247, 23jaoi 705 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
251, 24sylbi 120 1 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 697   = wceq 1331  wcel 1480  ifcif 3469  {csn 3522  cmpt 3984   × cxp 4532  (class class class)co 5767  cc 7611  0cc0 7613  1c1 7614   · cmul 7618  cmin 7926  cn 8713  0cn0 8970  cexp 10285   D cdv 12782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733  ax-addf 7735  ax-mulf 7736
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-of 5975  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-map 6537  df-pm 6538  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-xneg 9552  df-xadd 9553  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-rest 12111  df-topgen 12130  df-psmet 12145  df-xmet 12146  df-met 12147  df-bl 12148  df-mopn 12149  df-top 12154  df-topon 12167  df-bases 12199  df-ntr 12254  df-cn 12346  df-cnp 12347  df-tx 12411  df-cncf 12716  df-limced 12783  df-dvap 12784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator