ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvexp2 GIF version

Theorem dvexp2 12845
Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp2 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp2
StepHypRef Expression
1 elnn0 8979 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 dvexp 12844 . . . 4 (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
3 nnne0 8748 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
43neneqd 2329 . . . . . 6 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
54iffalsed 3484 . . . . 5 (𝑁 ∈ ℕ → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
65mpteq2dv 4019 . . . 4 (𝑁 ∈ ℕ → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
72, 6eqtr4d 2175 . . 3 (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
8 oveq2 5782 . . . . . . . . . 10 (𝑁 = 0 → (𝑥𝑁) = (𝑥↑0))
9 exp0 10297 . . . . . . . . . 10 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
108, 9sylan9eq 2192 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑥 ∈ ℂ) → (𝑥𝑁) = 1)
1110mpteq2dva 4018 . . . . . . . 8 (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (𝑥 ∈ ℂ ↦ 1))
12 fconstmpt 4586 . . . . . . . 8 (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1)
1311, 12syl6eqr 2190 . . . . . . 7 (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) = (ℂ × {1}))
1413oveq2d 5790 . . . . . 6 (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (ℂ D (ℂ × {1})))
15 ax-1cn 7713 . . . . . . 7 1 ∈ ℂ
16 dvconst 12830 . . . . . . 7 (1 ∈ ℂ → (ℂ D (ℂ × {1})) = (ℂ × {0}))
1715, 16ax-mp 5 . . . . . 6 (ℂ D (ℂ × {1})) = (ℂ × {0})
1814, 17syl6eq 2188 . . . . 5 (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (ℂ × {0}))
19 fconstmpt 4586 . . . . 5 (ℂ × {0}) = (𝑥 ∈ ℂ ↦ 0)
2018, 19syl6eq 2188 . . . 4 (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ 0))
21 iftrue 3479 . . . . 5 (𝑁 = 0 → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = 0)
2221mpteq2dv 4019 . . . 4 (𝑁 = 0 → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ 0))
2320, 22eqtr4d 2175 . . 3 (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
247, 23jaoi 705 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
251, 24sylbi 120 1 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 697   = wceq 1331  wcel 1480  ifcif 3474  {csn 3527  cmpt 3989   × cxp 4537  (class class class)co 5774  cc 7618  0cc0 7620  1c1 7621   · cmul 7625  cmin 7933  cn 8720  0cn0 8977  cexp 10292   D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator