![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvexp2 | GIF version |
Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
dvexp2 | ⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9245 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | dvexp 14890 | . . . 4 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | |
3 | nnne0 9012 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
4 | 3 | neneqd 2385 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
5 | 4 | iffalsed 3568 | . . . . 5 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
6 | 5 | mpteq2dv 4121 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
7 | 2, 6 | eqtr4d 2229 | . . 3 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
8 | oveq2 5927 | . . . . . . . . . 10 ⊢ (𝑁 = 0 → (𝑥↑𝑁) = (𝑥↑0)) | |
9 | exp0 10617 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
10 | 8, 9 | sylan9eq 2246 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ 𝑥 ∈ ℂ) → (𝑥↑𝑁) = 1) |
11 | 10 | mpteq2dva 4120 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ 1)) |
12 | fconstmpt 4707 | . . . . . . . 8 ⊢ (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1) | |
13 | 11, 12 | eqtr4di 2244 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (ℂ × {1})) |
14 | 13 | oveq2d 5935 | . . . . . 6 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (ℂ D (ℂ × {1}))) |
15 | ax-1cn 7967 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | dvconst 14873 | . . . . . . 7 ⊢ (1 ∈ ℂ → (ℂ D (ℂ × {1})) = (ℂ × {0})) | |
17 | 15, 16 | ax-mp 5 | . . . . . 6 ⊢ (ℂ D (ℂ × {1})) = (ℂ × {0}) |
18 | 14, 17 | eqtrdi 2242 | . . . . 5 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (ℂ × {0})) |
19 | fconstmpt 4707 | . . . . 5 ⊢ (ℂ × {0}) = (𝑥 ∈ ℂ ↦ 0) | |
20 | 18, 19 | eqtrdi 2242 | . . . 4 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ 0)) |
21 | iftrue 3563 | . . . . 5 ⊢ (𝑁 = 0 → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = 0) | |
22 | 21 | mpteq2dv 4121 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ 0)) |
23 | 20, 22 | eqtr4d 2229 | . . 3 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
24 | 7, 23 | jaoi 717 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
25 | 1, 24 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ifcif 3558 {csn 3619 ↦ cmpt 4091 × cxp 4658 (class class class)co 5919 ℂcc 7872 0cc0 7874 1c1 7875 · cmul 7879 − cmin 8192 ℕcn 8984 ℕ0cn0 9243 ↑cexp 10612 D cdv 14834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-map 6706 df-pm 6707 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-ntr 14275 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 df-limced 14835 df-dvap 14836 |
This theorem is referenced by: dvply1 14943 |
Copyright terms: Public domain | W3C validator |