| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvexp2 | GIF version | ||
| Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvexp2 | ⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9296 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | dvexp 15125 | . . . 4 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | |
| 3 | nnne0 9063 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 4 | 3 | neneqd 2396 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
| 5 | 4 | iffalsed 3580 | . . . . 5 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
| 6 | 5 | mpteq2dv 4134 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
| 7 | 2, 6 | eqtr4d 2240 | . . 3 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| 8 | oveq2 5951 | . . . . . . . . . 10 ⊢ (𝑁 = 0 → (𝑥↑𝑁) = (𝑥↑0)) | |
| 9 | exp0 10686 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
| 10 | 8, 9 | sylan9eq 2257 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ 𝑥 ∈ ℂ) → (𝑥↑𝑁) = 1) |
| 11 | 10 | mpteq2dva 4133 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ 1)) |
| 12 | fconstmpt 4721 | . . . . . . . 8 ⊢ (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1) | |
| 13 | 11, 12 | eqtr4di 2255 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (ℂ × {1})) |
| 14 | 13 | oveq2d 5959 | . . . . . 6 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (ℂ D (ℂ × {1}))) |
| 15 | ax-1cn 8017 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 16 | dvconst 15108 | . . . . . . 7 ⊢ (1 ∈ ℂ → (ℂ D (ℂ × {1})) = (ℂ × {0})) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . 6 ⊢ (ℂ D (ℂ × {1})) = (ℂ × {0}) |
| 18 | 14, 17 | eqtrdi 2253 | . . . . 5 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (ℂ × {0})) |
| 19 | fconstmpt 4721 | . . . . 5 ⊢ (ℂ × {0}) = (𝑥 ∈ ℂ ↦ 0) | |
| 20 | 18, 19 | eqtrdi 2253 | . . . 4 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ 0)) |
| 21 | iftrue 3575 | . . . . 5 ⊢ (𝑁 = 0 → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = 0) | |
| 22 | 21 | mpteq2dv 4134 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ 0)) |
| 23 | 20, 22 | eqtr4d 2240 | . . 3 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| 24 | 7, 23 | jaoi 717 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| 25 | 1, 24 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ifcif 3570 {csn 3632 ↦ cmpt 4104 × cxp 4672 (class class class)co 5943 ℂcc 7922 0cc0 7924 1c1 7925 · cmul 7929 − cmin 8242 ℕcn 9035 ℕ0cn0 9294 ↑cexp 10681 D cdv 15069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-map 6736 df-pm 6737 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-xneg 9893 df-xadd 9894 df-seqfrec 10591 df-exp 10682 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-rest 13015 df-topgen 13034 df-psmet 14247 df-xmet 14248 df-met 14249 df-bl 14250 df-mopn 14251 df-top 14412 df-topon 14425 df-bases 14457 df-ntr 14510 df-cn 14602 df-cnp 14603 df-tx 14667 df-cncf 14985 df-limced 15070 df-dvap 15071 |
| This theorem is referenced by: dvply1 15179 |
| Copyright terms: Public domain | W3C validator |