| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvexp2 | GIF version | ||
| Description: Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvexp2 | ⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9268 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | dvexp 15031 | . . . 4 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) | |
| 3 | nnne0 9035 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 4 | 3 | neneqd 2388 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
| 5 | 4 | iffalsed 3572 | . . . . 5 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))) |
| 6 | 5 | mpteq2dv 4125 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))) |
| 7 | 2, 6 | eqtr4d 2232 | . . 3 ⊢ (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| 8 | oveq2 5933 | . . . . . . . . . 10 ⊢ (𝑁 = 0 → (𝑥↑𝑁) = (𝑥↑0)) | |
| 9 | exp0 10652 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ → (𝑥↑0) = 1) | |
| 10 | 8, 9 | sylan9eq 2249 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ 𝑥 ∈ ℂ) → (𝑥↑𝑁) = 1) |
| 11 | 10 | mpteq2dva 4124 | . . . . . . . 8 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ 1)) |
| 12 | fconstmpt 4711 | . . . . . . . 8 ⊢ (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1) | |
| 13 | 11, 12 | eqtr4di 2247 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (ℂ × {1})) |
| 14 | 13 | oveq2d 5941 | . . . . . 6 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (ℂ D (ℂ × {1}))) |
| 15 | ax-1cn 7989 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 16 | dvconst 15014 | . . . . . . 7 ⊢ (1 ∈ ℂ → (ℂ D (ℂ × {1})) = (ℂ × {0})) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . 6 ⊢ (ℂ D (ℂ × {1})) = (ℂ × {0}) |
| 18 | 14, 17 | eqtrdi 2245 | . . . . 5 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (ℂ × {0})) |
| 19 | fconstmpt 4711 | . . . . 5 ⊢ (ℂ × {0}) = (𝑥 ∈ ℂ ↦ 0) | |
| 20 | 18, 19 | eqtrdi 2245 | . . . 4 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ 0)) |
| 21 | iftrue 3567 | . . . . 5 ⊢ (𝑁 = 0 → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) = 0) | |
| 22 | 21 | mpteq2dv 4125 | . . . 4 ⊢ (𝑁 = 0 → (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))) = (𝑥 ∈ ℂ ↦ 0)) |
| 23 | 20, 22 | eqtr4d 2232 | . . 3 ⊢ (𝑁 = 0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| 24 | 7, 23 | jaoi 717 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| 25 | 1, 24 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ifcif 3562 {csn 3623 ↦ cmpt 4095 × cxp 4662 (class class class)co 5925 ℂcc 7894 0cc0 7896 1c1 7897 · cmul 7901 − cmin 8214 ℕcn 9007 ℕ0cn0 9266 ↑cexp 10647 D cdv 14975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-pm 6719 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-cn 14508 df-cnp 14509 df-tx 14573 df-cncf 14891 df-limced 14976 df-dvap 14977 |
| This theorem is referenced by: dvply1 15085 |
| Copyright terms: Public domain | W3C validator |