ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpt GIF version

Theorem fnmpt 5387
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
Hypothesis
Ref Expression
mptfng.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmpt (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmpt
StepHypRef Expression
1 elex 2774 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 2560 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 mptfng.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptfng 5386 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
52, 4sylib 122 1 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cmpt 4095   Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-fun 5261  df-fn 5262
This theorem is referenced by:  mpt0  5388  fnmptfvd  5669  ralrnmpt  5707  rexrnmpt  5708  fmpt  5715  fmpt2d  5727  f1ocnvd  6129  offval2  6155  ofrfval2  6156  caofinvl  6165  f1od2  6302  frectfr  6467  omfnex  6516  oeiv  6523  mptelixpg  6802  fifo  7055  nnnninfeq  7203  nninfwlporlemd  7247  cc2lem  7349  seqf1og  10630  efcvgfsum  11849  prdsbas3  12989  prdsbascl  12991  quslem  13026  grpinvfng  13246  conjnmz  13485  neif  14461  tgrest  14489  dvrecap  15033  gausslemma2dlem1f1o  15385  fnmptd  15534
  Copyright terms: Public domain W3C validator