ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpt GIF version

Theorem fnmpt 5091
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
Hypothesis
Ref Expression
mptfng.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmpt (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmpt
StepHypRef Expression
1 elex 2621 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 2432 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 mptfng.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptfng 5090 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
52, 4sylib 120 1 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  wral 2353  Vcvv 2612  cmpt 3865   Fn wfn 4962
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4083  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-fun 4969  df-fn 4970
This theorem is referenced by:  mpt0  5092  ralrnmpt  5384  rexrnmpt  5385  fmpt  5392  fmpt2d  5400  f1ocnvd  5779  offval2  5803  ofrfval2  5804  caofinvl  5810  f1od2  5933  frectfr  6095  omfnex  6140  oeiv  6147
  Copyright terms: Public domain W3C validator