ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpt GIF version

Theorem fnmpt 5314
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
Hypothesis
Ref Expression
mptfng.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmpt (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmpt
StepHypRef Expression
1 elex 2737 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 2529 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 mptfng.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptfng 5313 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
52, 4sylib 121 1 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  cmpt 4043   Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190  df-fn 5191
This theorem is referenced by:  mpt0  5315  ralrnmpt  5627  rexrnmpt  5628  fmpt  5635  fmpt2d  5647  f1ocnvd  6040  offval2  6065  ofrfval2  6066  caofinvl  6072  f1od2  6203  frectfr  6368  omfnex  6417  oeiv  6424  mptelixpg  6700  fifo  6945  nnnninfeq  7092  cc2lem  7207  efcvgfsum  11608  neif  12791  tgrest  12819  dvrecap  13327  fnmptd  13696
  Copyright terms: Public domain W3C validator