ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpt GIF version

Theorem fnmpt 5384
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
Hypothesis
Ref Expression
mptfng.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fnmpt (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmpt
StepHypRef Expression
1 elex 2774 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 2560 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 mptfng.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43mptfng 5383 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
52, 4sylib 122 1 (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cmpt 4094   Fn wfn 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-fun 5260  df-fn 5261
This theorem is referenced by:  mpt0  5385  fnmptfvd  5666  ralrnmpt  5704  rexrnmpt  5705  fmpt  5712  fmpt2d  5724  f1ocnvd  6125  offval2  6151  ofrfval2  6152  caofinvl  6160  f1od2  6293  frectfr  6458  omfnex  6507  oeiv  6514  mptelixpg  6793  fifo  7046  nnnninfeq  7194  nninfwlporlemd  7238  cc2lem  7333  seqf1og  10613  efcvgfsum  11832  quslem  12967  grpinvfng  13176  conjnmz  13409  neif  14377  tgrest  14405  dvrecap  14949  gausslemma2dlem1f1o  15301  fnmptd  15450
  Copyright terms: Public domain W3C validator