Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnmpt | GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) |
Ref | Expression |
---|---|
mptfng.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fnmpt | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
2 | 1 | ralimi 2533 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
3 | mptfng.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptfng 5323 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
5 | 2, 4 | sylib 121 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ↦ cmpt 4050 Fn wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 df-fn 5201 |
This theorem is referenced by: mpt0 5325 fnmptfvd 5600 ralrnmpt 5638 rexrnmpt 5639 fmpt 5646 fmpt2d 5658 f1ocnvd 6051 offval2 6076 ofrfval2 6077 caofinvl 6083 f1od2 6214 frectfr 6379 omfnex 6428 oeiv 6435 mptelixpg 6712 fifo 6957 nnnninfeq 7104 nninfwlporlemd 7148 cc2lem 7228 efcvgfsum 11630 grpinvfng 12747 neif 12935 tgrest 12963 dvrecap 13471 fnmptd 13839 |
Copyright terms: Public domain | W3C validator |