| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgrun | GIF version | ||
| Description: The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| upgrun.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| upgrun.h | ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
| upgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| upgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| upgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| upgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| upgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| upgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| upgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
| Ref | Expression |
|---|---|
| upgrun | ⊢ (𝜑 → 𝑈 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrun.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
| 2 | upgrun.vg | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | upgrun.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 2, 3 | upgrfen 15743 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 5 | 1, 4 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 6 | upgrun.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ UPGraph) | |
| 7 | eqid 2206 | . . . . . . 7 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 8 | upgrun.f | . . . . . . 7 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | 7, 8 | upgrfen 15743 | . . . . . 6 ⊢ (𝐻 ∈ UPGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 10 | 6, 9 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 11 | upgrun.vh | . . . . . . . . 9 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 12 | 11 | eqcomd 2212 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Vtx‘𝐻)) |
| 13 | 12 | pweqd 3623 | . . . . . . 7 ⊢ (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻)) |
| 14 | 13 | rabeqdv 2767 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 15 | 14 | feq3d 5421 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 16 | 10, 15 | mpbird 167 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 17 | upgrun.i | . . . 4 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 18 | 5, 16, 17 | fun2d 5458 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 19 | upgrun.un | . . . 4 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
| 20 | 19 | dmeqd 4886 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐸 ∪ 𝐹)) |
| 21 | dmun 4891 | . . . . 5 ⊢ dom (𝐸 ∪ 𝐹) = (dom 𝐸 ∪ dom 𝐹) | |
| 22 | 20, 21 | eqtrdi 2255 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹)) |
| 23 | upgrun.v | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 24 | 23 | pweqd 3623 | . . . . 5 ⊢ (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉) |
| 25 | 24 | rabeqdv 2767 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 26 | 19, 22, 25 | feq123d 5423 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 27 | 18, 26 | mpbird 167 | . 2 ⊢ (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 28 | upgrun.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 29 | eqid 2206 | . . . 4 ⊢ (Vtx‘𝑈) = (Vtx‘𝑈) | |
| 30 | eqid 2206 | . . . 4 ⊢ (iEdg‘𝑈) = (iEdg‘𝑈) | |
| 31 | 29, 30 | isupgren 15741 | . . 3 ⊢ (𝑈 ∈ 𝑊 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 32 | 28, 31 | syl 14 | . 2 ⊢ (𝜑 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 33 | 27, 32 | mpbird 167 | 1 ⊢ (𝜑 → 𝑈 ∈ UPGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 {crab 2489 ∪ cun 3166 ∩ cin 3167 ∅c0 3462 𝒫 cpw 3618 class class class wbr 4048 dom cdm 4680 ⟶wf 5273 ‘cfv 5277 1oc1o 6505 2oc2o 6506 ≈ cen 6835 Vtxcvtx 15661 iEdgciedg 15662 UPGraphcupgr 15737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fo 5283 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-sub 8258 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-9 9115 df-n0 9309 df-dec 9518 df-ndx 12885 df-slot 12886 df-base 12888 df-edgf 15654 df-vtx 15663 df-iedg 15664 df-upgren 15739 |
| This theorem is referenced by: upgrunop 15768 |
| Copyright terms: Public domain | W3C validator |