| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgrun | GIF version | ||
| Description: The union 𝑈 of two pseudographs 𝐺 and 𝐻 with the same vertex set 𝑉 is a pseudograph with the vertex 𝑉 and the union (𝐸 ∪ 𝐹) of the (indexed) edges. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| upgrun.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| upgrun.h | ⊢ (𝜑 → 𝐻 ∈ UPGraph) |
| upgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| upgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| upgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| upgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| upgrun.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| upgrun.v | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| upgrun.un | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) |
| Ref | Expression |
|---|---|
| upgrun | ⊢ (𝜑 → 𝑈 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrun.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UPGraph) | |
| 2 | upgrun.vg | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | upgrun.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | 2, 3 | upgrfen 15882 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 5 | 1, 4 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 6 | upgrun.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ UPGraph) | |
| 7 | eqid 2229 | . . . . . . 7 ⊢ (Vtx‘𝐻) = (Vtx‘𝐻) | |
| 8 | upgrun.f | . . . . . . 7 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 9 | 7, 8 | upgrfen 15882 | . . . . . 6 ⊢ (𝐻 ∈ UPGraph → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 10 | 6, 9 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 11 | upgrun.vh | . . . . . . . . 9 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 12 | 11 | eqcomd 2235 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 = (Vtx‘𝐻)) |
| 13 | 12 | pweqd 3654 | . . . . . . 7 ⊢ (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻)) |
| 14 | 13 | rabeqdv 2793 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 15 | 14 | feq3d 5458 | . . . . 5 ⊢ (𝜑 → (𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 (Vtx‘𝐻) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 16 | 10, 15 | mpbird 167 | . . . 4 ⊢ (𝜑 → 𝐹:dom 𝐹⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 17 | upgrun.i | . . . 4 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 18 | 5, 16, 17 | fun2d 5495 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 19 | upgrun.un | . . . 4 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐸 ∪ 𝐹)) | |
| 20 | 19 | dmeqd 4922 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑈) = dom (𝐸 ∪ 𝐹)) |
| 21 | dmun 4927 | . . . . 5 ⊢ dom (𝐸 ∪ 𝐹) = (dom 𝐸 ∪ dom 𝐹) | |
| 22 | 20, 21 | eqtrdi 2278 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹)) |
| 23 | upgrun.v | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 24 | 23 | pweqd 3654 | . . . . 5 ⊢ (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉) |
| 25 | 24 | rabeqdv 2793 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} = {𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 26 | 19, 22, 25 | feq123d 5460 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔ (𝐸 ∪ 𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑥 ∈ 𝒫 𝑉 ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 27 | 18, 26 | mpbird 167 | . 2 ⊢ (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)}) |
| 28 | upgrun.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 29 | eqid 2229 | . . . 4 ⊢ (Vtx‘𝑈) = (Vtx‘𝑈) | |
| 30 | eqid 2229 | . . . 4 ⊢ (iEdg‘𝑈) = (iEdg‘𝑈) | |
| 31 | 29, 30 | isupgren 15880 | . . 3 ⊢ (𝑈 ∈ 𝑊 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 32 | 28, 31 | syl 14 | . 2 ⊢ (𝜑 → (𝑈 ∈ UPGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑥 ∈ 𝒫 (Vtx‘𝑈) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)})) |
| 33 | 27, 32 | mpbird 167 | 1 ⊢ (𝜑 → 𝑈 ∈ UPGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {crab 2512 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 𝒫 cpw 3649 class class class wbr 4082 dom cdm 4716 ⟶wf 5310 ‘cfv 5314 1oc1o 6545 2oc2o 6546 ≈ cen 6875 Vtxcvtx 15798 iEdgciedg 15799 UPGraphcupgr 15876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-sub 8307 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-dec 9567 df-ndx 13021 df-slot 13022 df-base 13024 df-edgf 15791 df-vtx 15800 df-iedg 15801 df-upgren 15878 |
| This theorem is referenced by: upgrunop 15910 uspgrun 15974 |
| Copyright terms: Public domain | W3C validator |