ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgrun GIF version

Theorem uhgrun 15851
Description: The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex set 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g (𝜑𝐺 ∈ UHGraph)
uhgrun.h (𝜑𝐻 ∈ UHGraph)
uhgrun.e 𝐸 = (iEdg‘𝐺)
uhgrun.f 𝐹 = (iEdg‘𝐻)
uhgrun.vg 𝑉 = (Vtx‘𝐺)
uhgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uhgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
uhgrun.u (𝜑𝑈𝑊)
uhgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
uhgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
uhgrun (𝜑𝑈 ∈ UHGraph)

Proof of Theorem uhgrun
Dummy variables 𝑠 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgrun.g . . . . 5 (𝜑𝐺 ∈ UHGraph)
2 uhgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 uhgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3uhgrfm 15838 . . . . 5 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
51, 4syl 14 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
6 uhgrun.h . . . . . 6 (𝜑𝐻 ∈ UHGraph)
7 eqid 2209 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 uhgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8uhgrfm 15838 . . . . . 6 (𝐻 ∈ UHGraph → 𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 (Vtx‘𝐻) ∣ ∃𝑗 𝑗𝑠})
106, 9syl 14 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 (Vtx‘𝐻) ∣ ∃𝑗 𝑗𝑠})
11 uhgrun.vh . . . . . . . . 9 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2215 . . . . . . . 8 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 3634 . . . . . . 7 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413rabeqdv 2773 . . . . . 6 (𝜑 → {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ 𝒫 (Vtx‘𝐻) ∣ ∃𝑗 𝑗𝑠})
1514feq3d 5438 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠} ↔ 𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 (Vtx‘𝐻) ∣ ∃𝑗 𝑗𝑠}))
1610, 15mpbird 167 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
17 uhgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
185, 16, 17fun2d 5475 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
19 uhgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2019dmeqd 4902 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
21 dmun 4907 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2220, 21eqtrdi 2258 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
23 uhgrun.v . . . . . 6 (𝜑 → (Vtx‘𝑈) = 𝑉)
2423pweqd 3634 . . . . 5 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2524rabeqdv 2773 . . . 4 (𝜑 → {𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
2619, 22, 25feq123d 5440 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
2718, 26mpbird 167 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠})
28 uhgrun.u . . 3 (𝜑𝑈𝑊)
29 eqid 2209 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
30 eqid 2209 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3129, 30isuhgrm 15836 . . 3 (𝑈𝑊 → (𝑈 ∈ UHGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠}))
3228, 31syl 14 . 2 (𝜑 → (𝑈 ∈ UHGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠}))
3327, 32mpbird 167 1 (𝜑𝑈 ∈ UHGraph)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wex 1518  wcel 2180  {crab 2492  cun 3175  cin 3176  c0 3471  𝒫 cpw 3629  dom cdm 4696  wf 5290  cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  UHGraphcuhgr 15832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-uhgrm 15834
This theorem is referenced by:  uhgrunop  15852  ushgrun  15853
  Copyright terms: Public domain W3C validator