ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgrun GIF version

Theorem uhgrun 15894
Description: The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex set 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g (𝜑𝐺 ∈ UHGraph)
uhgrun.h (𝜑𝐻 ∈ UHGraph)
uhgrun.e 𝐸 = (iEdg‘𝐺)
uhgrun.f 𝐹 = (iEdg‘𝐻)
uhgrun.vg 𝑉 = (Vtx‘𝐺)
uhgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uhgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
uhgrun.u (𝜑𝑈𝑊)
uhgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
uhgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
uhgrun (𝜑𝑈 ∈ UHGraph)

Proof of Theorem uhgrun
Dummy variables 𝑠 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgrun.g . . . . 5 (𝜑𝐺 ∈ UHGraph)
2 uhgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 uhgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3uhgrfm 15881 . . . . 5 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
51, 4syl 14 . . . 4 (𝜑𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
6 uhgrun.h . . . . . 6 (𝜑𝐻 ∈ UHGraph)
7 eqid 2229 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 uhgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8uhgrfm 15881 . . . . . 6 (𝐻 ∈ UHGraph → 𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 (Vtx‘𝐻) ∣ ∃𝑗 𝑗𝑠})
106, 9syl 14 . . . . 5 (𝜑𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 (Vtx‘𝐻) ∣ ∃𝑗 𝑗𝑠})
11 uhgrun.vh . . . . . . . . 9 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2235 . . . . . . . 8 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 3654 . . . . . . 7 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413rabeqdv 2793 . . . . . 6 (𝜑 → {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ 𝒫 (Vtx‘𝐻) ∣ ∃𝑗 𝑗𝑠})
1514feq3d 5462 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠} ↔ 𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 (Vtx‘𝐻) ∣ ∃𝑗 𝑗𝑠}))
1610, 15mpbird 167 . . . 4 (𝜑𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
17 uhgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
185, 16, 17fun2d 5501 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
19 uhgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2019dmeqd 4925 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
21 dmun 4930 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2220, 21eqtrdi 2278 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
23 uhgrun.v . . . . . 6 (𝜑 → (Vtx‘𝑈) = 𝑉)
2423pweqd 3654 . . . . 5 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2524rabeqdv 2793 . . . 4 (𝜑 → {𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠} = {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
2619, 22, 25feq123d 5464 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠} ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
2718, 26mpbird 167 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠})
28 uhgrun.u . . 3 (𝜑𝑈𝑊)
29 eqid 2229 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
30 eqid 2229 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3129, 30isuhgrm 15879 . . 3 (𝑈𝑊 → (𝑈 ∈ UHGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠}))
3228, 31syl 14 . 2 (𝜑 → (𝑈 ∈ UHGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶{𝑠 ∈ 𝒫 (Vtx‘𝑈) ∣ ∃𝑗 𝑗𝑠}))
3327, 32mpbird 167 1 (𝜑𝑈 ∈ UHGraph)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  {crab 2512  cun 3195  cin 3196  c0 3491  𝒫 cpw 3649  dom cdm 4719  wf 5314  cfv 5318  Vtxcvtx 15821  iEdgciedg 15822  UHGraphcuhgr 15875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-uhgrm 15877
This theorem is referenced by:  uhgrunop  15895  ushgrun  15896
  Copyright terms: Public domain W3C validator