ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzsucd GIF version

Theorem frec2uzsucd 10415
Description: The value of 𝐺 (see frec2uz0d 10413) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
frec2uzsucd (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzsucd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 peano2z 9303 . . . . . . 7 (𝑧 ∈ ℤ → (𝑧 + 1) ∈ ℤ)
2 oveq1 5895 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
3 eqid 2187 . . . . . . . 8 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1))
42, 3fvmptg 5605 . . . . . . 7 ((𝑧 ∈ ℤ ∧ (𝑧 + 1) ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1))
51, 4mpdan 421 . . . . . 6 (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1))
65, 1eqeltrd 2264 . . . . 5 (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ)
76rgen 2540 . . . 4 𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ
8 frec2uz.1 . . . 4 (𝜑𝐶 ∈ ℤ)
9 frec2uzzd.a . . . 4 (𝜑𝐴 ∈ ω)
10 frecsuc 6422 . . . 4 ((∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)))
117, 8, 9, 10mp3an2i 1352 . . 3 (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)))
12 frec2uz.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
1312fveq1i 5528 . . 3 (𝐺‘suc 𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴)
1412fveq1i 5528 . . . 4 (𝐺𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)
1514fveq2i 5530 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))
1611, 13, 153eqtr4g 2245 . 2 (𝜑 → (𝐺‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)))
178, 12, 9frec2uzzd 10414 . . 3 (𝜑 → (𝐺𝐴) ∈ ℤ)
18 oveq1 5895 . . . 4 (𝑧 = (𝐺𝐴) → (𝑧 + 1) = ((𝐺𝐴) + 1))
192cbvmptv 4111 . . . 4 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑧 ∈ ℤ ↦ (𝑧 + 1))
2018, 19, 1fvmpt3 5608 . . 3 ((𝐺𝐴) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝐺𝐴) + 1))
2117, 20syl 14 . 2 (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺𝐴)) = ((𝐺𝐴) + 1))
2216, 21eqtrd 2220 1 (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  wral 2465  cmpt 4076  suc csuc 4377  ωcom 4601  cfv 5228  (class class class)co 5888  freccfrec 6405  1c1 7826   + caddc 7828  cz 9267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-recs 6320  df-frec 6406  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268
This theorem is referenced by:  frec2uzuzd  10416  frec2uzltd  10417  frec2uzrand  10419  frec2uzrdg  10423  frecuzrdgsuc  10428  frecuzrdgg  10430  frecfzennn  10440  1tonninf  10454  omgadd  10796  ennnfonelemkh  12427  ennnfonelemhf1o  12428  ennnfonelemnn0  12437  012of  15042  2o01f  15043  isomninnlem  15075  iswomninnlem  15094  ismkvnnlem  15097
  Copyright terms: Public domain W3C validator