![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzsucd | GIF version |
Description: The value of 𝐺 (see frec2uz0d 9955) at a successor. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
frec2uzsucd | ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 8884 | . . . . . . 7 ⊢ (𝑧 ∈ ℤ → (𝑧 + 1) ∈ ℤ) | |
2 | oveq1 5697 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
3 | eqid 2095 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) | |
4 | 2, 3 | fvmptg 5415 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 + 1) ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1)) |
5 | 1, 4 | mpdan 413 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1)) |
6 | 5, 1 | eqeltrd 2171 | . . . . 5 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ) |
7 | 6 | rgen 2439 | . . . 4 ⊢ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ |
8 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
9 | frec2uzzd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
10 | frecsuc 6210 | . . . 4 ⊢ ((∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) | |
11 | 7, 8, 9, 10 | mp3an2i 1285 | . . 3 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) |
12 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
13 | 12 | fveq1i 5341 | . . 3 ⊢ (𝐺‘suc 𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) |
14 | 12 | fveq1i 5341 | . . . 4 ⊢ (𝐺‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) |
15 | 14 | fveq2i 5343 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)) |
16 | 11, 13, 15 | 3eqtr4g 2152 | . 2 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴))) |
17 | 8, 12, 9 | frec2uzzd 9956 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
18 | oveq1 5697 | . . . 4 ⊢ (𝑧 = (𝐺‘𝐴) → (𝑧 + 1) = ((𝐺‘𝐴) + 1)) | |
19 | 2 | cbvmptv 3956 | . . . 4 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑧 ∈ ℤ ↦ (𝑧 + 1)) |
20 | 18, 19, 1 | fvmpt3 5418 | . . 3 ⊢ ((𝐺‘𝐴) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝐺‘𝐴) + 1)) |
21 | 17, 20 | syl 14 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝐺‘𝐴) + 1)) |
22 | 16, 21 | eqtrd 2127 | 1 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 ∀wral 2370 ↦ cmpt 3921 suc csuc 4216 ωcom 4433 ‘cfv 5049 (class class class)co 5690 freccfrec 6193 1c1 7448 + caddc 7450 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-ilim 4220 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-recs 6108 df-frec 6194 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 |
This theorem is referenced by: frec2uzuzd 9958 frec2uzltd 9959 frec2uzrand 9961 frec2uzrdg 9965 frecuzrdgsuc 9970 frecuzrdgg 9972 frecfzennn 9982 1tonninf 9995 omgadd 10341 |
Copyright terms: Public domain | W3C validator |