Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frec2uzsucd | GIF version |
Description: The value of 𝐺 (see frec2uz0d 10355) at a successor. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
frec2uzsucd | ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 9248 | . . . . . . 7 ⊢ (𝑧 ∈ ℤ → (𝑧 + 1) ∈ ℤ) | |
2 | oveq1 5860 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
3 | eqid 2170 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) | |
4 | 2, 3 | fvmptg 5572 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 + 1) ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1)) |
5 | 1, 4 | mpdan 419 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1)) |
6 | 5, 1 | eqeltrd 2247 | . . . . 5 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ) |
7 | 6 | rgen 2523 | . . . 4 ⊢ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ |
8 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
9 | frec2uzzd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
10 | frecsuc 6386 | . . . 4 ⊢ ((∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) | |
11 | 7, 8, 9, 10 | mp3an2i 1337 | . . 3 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) |
12 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
13 | 12 | fveq1i 5497 | . . 3 ⊢ (𝐺‘suc 𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) |
14 | 12 | fveq1i 5497 | . . . 4 ⊢ (𝐺‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) |
15 | 14 | fveq2i 5499 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)) |
16 | 11, 13, 15 | 3eqtr4g 2228 | . 2 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴))) |
17 | 8, 12, 9 | frec2uzzd 10356 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
18 | oveq1 5860 | . . . 4 ⊢ (𝑧 = (𝐺‘𝐴) → (𝑧 + 1) = ((𝐺‘𝐴) + 1)) | |
19 | 2 | cbvmptv 4085 | . . . 4 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑧 ∈ ℤ ↦ (𝑧 + 1)) |
20 | 18, 19, 1 | fvmpt3 5575 | . . 3 ⊢ ((𝐺‘𝐴) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝐺‘𝐴) + 1)) |
21 | 17, 20 | syl 14 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝐺‘𝐴) + 1)) |
22 | 16, 21 | eqtrd 2203 | 1 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ↦ cmpt 4050 suc csuc 4350 ωcom 4574 ‘cfv 5198 (class class class)co 5853 freccfrec 6369 1c1 7775 + caddc 7777 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: frec2uzuzd 10358 frec2uzltd 10359 frec2uzrand 10361 frec2uzrdg 10365 frecuzrdgsuc 10370 frecuzrdgg 10372 frecfzennn 10382 1tonninf 10396 omgadd 10737 ennnfonelemkh 12367 ennnfonelemhf1o 12368 ennnfonelemnn0 12377 012of 14028 2o01f 14029 isomninnlem 14062 iswomninnlem 14081 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |