![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzsucd | GIF version |
Description: The value of 𝐺 (see frec2uz0d 9693) at a successor. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
frec2uzsucd | ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 8680 | . . . . . . 7 ⊢ (𝑧 ∈ ℤ → (𝑧 + 1) ∈ ℤ) | |
2 | oveq1 5596 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1)) | |
3 | eqid 2083 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) | |
4 | 2, 3 | fvmptg 5323 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 + 1) ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1)) |
5 | 1, 4 | mpdan 412 | . . . . . 6 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) = (𝑧 + 1)) |
6 | 5, 1 | eqeltrd 2159 | . . . . 5 ⊢ (𝑧 ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ) |
7 | 6 | rgen 2422 | . . . 4 ⊢ ∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ |
8 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
9 | frec2uzzd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ω) | |
10 | frecsuc 6102 | . . . 4 ⊢ ((∀𝑧 ∈ ℤ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ∈ ω) → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) | |
11 | 7, 8, 9, 10 | mp3an2i 1274 | . . 3 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴))) |
12 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
13 | 12 | fveq1i 5252 | . . 3 ⊢ (𝐺‘suc 𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘suc 𝐴) |
14 | 12 | fveq1i 5252 | . . . 4 ⊢ (𝐺‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) |
15 | 14 | fveq2i 5254 | . . 3 ⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)) |
16 | 11, 13, 15 | 3eqtr4g 2140 | . 2 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴))) |
17 | 8, 12, 9 | frec2uzzd 9694 | . . 3 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
18 | oveq1 5596 | . . . 4 ⊢ (𝑧 = (𝐺‘𝐴) → (𝑧 + 1) = ((𝐺‘𝐴) + 1)) | |
19 | 2 | cbvmptv 3899 | . . . 4 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑧 ∈ ℤ ↦ (𝑧 + 1)) |
20 | 18, 19, 1 | fvmpt3 5326 | . . 3 ⊢ ((𝐺‘𝐴) ∈ ℤ → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝐺‘𝐴) + 1)) |
21 | 17, 20 | syl 14 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘(𝐺‘𝐴)) = ((𝐺‘𝐴) + 1)) |
22 | 16, 21 | eqtrd 2115 | 1 ⊢ (𝜑 → (𝐺‘suc 𝐴) = ((𝐺‘𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 ∀wral 2353 ↦ cmpt 3865 suc csuc 4155 ωcom 4367 ‘cfv 4967 (class class class)co 5589 freccfrec 6085 1c1 7252 + caddc 7254 ℤcz 8644 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-iinf 4365 ax-cnex 7337 ax-resscn 7338 ax-1cn 7339 ax-1re 7340 ax-icn 7341 ax-addcl 7342 ax-addrcl 7343 ax-mulcl 7344 ax-addcom 7346 ax-addass 7348 ax-distr 7350 ax-i2m1 7351 ax-0id 7354 ax-rnegex 7355 ax-cnre 7357 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4083 df-iord 4156 df-on 4158 df-ilim 4159 df-suc 4161 df-iom 4368 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-rn 4410 df-res 4411 df-ima 4412 df-iota 4932 df-fun 4969 df-fn 4970 df-f 4971 df-f1 4972 df-fo 4973 df-f1o 4974 df-fv 4975 df-riota 5545 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-recs 6000 df-frec 6086 df-sub 7556 df-neg 7557 df-inn 8315 df-n0 8564 df-z 8645 |
This theorem is referenced by: frec2uzuzd 9696 frec2uzltd 9697 frec2uzrand 9699 frec2uzrdg 9703 frecuzrdgsuc 9708 frecuzrdgg 9710 frecfzennn 9720 1tonninf 9733 omgadd 10043 |
Copyright terms: Public domain | W3C validator |