| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvmpt | GIF version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | 
| fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | 
| fvmpt.3 | ⊢ 𝐶 ∈ V | 
| Ref | Expression | 
|---|---|
| fvmpt | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvmpt.3 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | fvmptg.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | fvmptg.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 4 | 2, 3 | fvmptg 5637 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = 𝐶) | 
| 5 | 1, 4 | mpan2 425 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4094 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 | 
| This theorem is referenced by: reldm 6244 rdg0 6445 oacl 6518 fvmptmap 6744 xpcomco 6885 infnninf 7190 uzval 9603 sqrtrval 11165 fsumcnv 11602 fprodcnv 11790 ege2le3 11836 bitsfval 12107 nninfctlemfo 12207 qnumval 12353 qdenval 12354 odzval 12410 pcmpt 12512 1arithlem1 12532 elply2 14971 peano4nninf 15650 peano3nninf 15651 nninfsellemeq 15658 | 
| Copyright terms: Public domain | W3C validator |