Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmpt | GIF version |
Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.) |
Ref | Expression |
---|---|
fvmptg.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptg.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
fvmpt.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fvmpt | ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpt.3 | . 2 ⊢ 𝐶 ∈ V | |
2 | fvmptg.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | fvmptg.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
4 | 2, 3 | fvmptg 5570 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ V) → (𝐹‘𝐴) = 𝐶) |
5 | 1, 4 | mpan2 423 | 1 ⊢ (𝐴 ∈ 𝐷 → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ↦ cmpt 4048 ‘cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 |
This theorem is referenced by: reldm 6163 rdg0 6364 oacl 6437 fvmptmap 6661 xpcomco 6802 infnninf 7098 uzval 9482 sqrtrval 10957 fsumcnv 11393 fprodcnv 11581 ege2le3 11627 qnumval 12132 qdenval 12133 odzval 12188 pcmpt 12288 1arithlem1 12308 peano4nninf 14004 peano3nninf 14005 nninfsellemeq 14012 |
Copyright terms: Public domain | W3C validator |