ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt GIF version

Theorem fvmpt 5562
Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
Hypotheses
Ref Expression
fvmptg.1 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptg.2 𝐹 = (𝑥𝐷𝐵)
fvmpt.3 𝐶 ∈ V
Assertion
Ref Expression
fvmpt (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt
StepHypRef Expression
1 fvmpt.3 . 2 𝐶 ∈ V
2 fvmptg.1 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
3 fvmptg.2 . . 3 𝐹 = (𝑥𝐷𝐵)
42, 3fvmptg 5561 . 2 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = 𝐶)
51, 4mpan2 422 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  Vcvv 2725  cmpt 4042  cfv 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-sbc 2951  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195
This theorem is referenced by:  reldm  6151  rdg0  6351  oacl  6424  fvmptmap  6647  xpcomco  6788  infnninf  7084  uzval  9464  sqrtrval  10938  fsumcnv  11374  fprodcnv  11562  ege2le3  11608  qnumval  12113  qdenval  12114  odzval  12169  pcmpt  12269  1arithlem1  12289  peano4nninf  13846  peano3nninf  13847  nninfsellemeq  13854
  Copyright terms: Public domain W3C validator