ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt GIF version

Theorem fvmpt 5663
Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
Hypotheses
Ref Expression
fvmptg.1 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptg.2 𝐹 = (𝑥𝐷𝐵)
fvmpt.3 𝐶 ∈ V
Assertion
Ref Expression
fvmpt (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt
StepHypRef Expression
1 fvmpt.3 . 2 𝐶 ∈ V
2 fvmptg.1 . . 3 (𝑥 = 𝐴𝐵 = 𝐶)
3 fvmptg.2 . . 3 𝐹 = (𝑥𝐷𝐵)
42, 3fvmptg 5662 . 2 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = 𝐶)
51, 4mpan2 425 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  cmpt 4109  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284
This theorem is referenced by:  reldm  6279  rdg0  6480  oacl  6553  fvmptmap  6779  xpcomco  6928  infnninf  7233  uzval  9657  sqrtrval  11355  fsumcnv  11792  fprodcnv  11980  ege2le3  12026  bitsfval  12297  nninfctlemfo  12405  qnumval  12551  qdenval  12552  odzval  12608  pcmpt  12710  1arithlem1  12730  elply2  15251  peano4nninf  16017  peano3nninf  16018  nninfsellemeq  16025
  Copyright terms: Public domain W3C validator