ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2 GIF version

Theorem imaeq2 5017
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imaeq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem imaeq2
StepHypRef Expression
1 reseq2 4953 . . 3 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
21rneqd 4906 . 2 (𝐴 = 𝐵 → ran (𝐶𝐴) = ran (𝐶𝐵))
3 df-ima 4687 . 2 (𝐶𝐴) = ran (𝐶𝐴)
4 df-ima 4687 . 2 (𝐶𝐵) = ran (𝐶𝐵)
52, 3, 43eqtr4g 2262 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  ran crn 4675  cres 4676  cima 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687
This theorem is referenced by:  imaeq2i  5019  imaeq2d  5021  fimadmfo  5506  ssimaex  5639  ssimaexg  5640  isoselem  5888  f1opw2  6151  fopwdom  6932  ssenen  6947  fiintim  7027  fidcenumlemrk  7055  fidcenumlemr  7056  sbthlem2  7059  isbth  7068  ennnfonelemp1  12719  ennnfonelemnn0  12735  ctinfomlemom  12740  ctinfom  12741  tgcn  14622  iscnp4  14632  cnpnei  14633  cnima  14634  cnconst2  14647  cnrest2  14650  cnptoprest  14653  txcnp  14685  txcnmpt  14687  metcnp3  14925
  Copyright terms: Public domain W3C validator