| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2 | GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 4999 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 2 | 1 | rneqd 4952 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐶 ↾ 𝐴) = ran (𝐶 ↾ 𝐵)) |
| 3 | df-ima 4731 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 4 | df-ima 4731 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ran crn 4719 ↾ cres 4720 “ cima 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 |
| This theorem is referenced by: imaeq2i 5065 imaeq2d 5067 fimadmfo 5556 ssimaex 5694 ssimaexg 5695 isoselem 5943 f1opw2 6210 fopwdom 6993 ssenen 7008 fiintim 7089 fidcenumlemrk 7117 fidcenumlemr 7118 sbthlem2 7121 isbth 7130 ennnfonelemp1 12972 ennnfonelemnn0 12988 ctinfomlemom 12993 ctinfom 12994 tgcn 14876 iscnp4 14886 cnpnei 14887 cnima 14888 cnconst2 14901 cnrest2 14904 cnptoprest 14907 txcnp 14939 txcnmpt 14941 metcnp3 15179 |
| Copyright terms: Public domain | W3C validator |