| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2 | GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 4963 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 2 | 1 | rneqd 4916 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐶 ↾ 𝐴) = ran (𝐶 ↾ 𝐵)) |
| 3 | df-ima 4696 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 4 | df-ima 4696 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr4g 2264 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ran crn 4684 ↾ cres 4685 “ cima 4686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 |
| This theorem is referenced by: imaeq2i 5029 imaeq2d 5031 fimadmfo 5519 ssimaex 5653 ssimaexg 5654 isoselem 5902 f1opw2 6165 fopwdom 6948 ssenen 6963 fiintim 7043 fidcenumlemrk 7071 fidcenumlemr 7072 sbthlem2 7075 isbth 7084 ennnfonelemp1 12852 ennnfonelemnn0 12868 ctinfomlemom 12873 ctinfom 12874 tgcn 14755 iscnp4 14765 cnpnei 14766 cnima 14767 cnconst2 14780 cnrest2 14783 cnptoprest 14786 txcnp 14818 txcnmpt 14820 metcnp3 15058 |
| Copyright terms: Public domain | W3C validator |