| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq2 | GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| imaeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 4953 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
| 2 | 1 | rneqd 4906 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐶 ↾ 𝐴) = ran (𝐶 ↾ 𝐵)) |
| 3 | df-ima 4687 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
| 4 | df-ima 4687 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr4g 2262 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ran crn 4675 ↾ cres 4676 “ cima 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 |
| This theorem is referenced by: imaeq2i 5019 imaeq2d 5021 fimadmfo 5506 ssimaex 5639 ssimaexg 5640 isoselem 5888 f1opw2 6151 fopwdom 6932 ssenen 6947 fiintim 7027 fidcenumlemrk 7055 fidcenumlemr 7056 sbthlem2 7059 isbth 7068 ennnfonelemp1 12719 ennnfonelemnn0 12735 ctinfomlemom 12740 ctinfom 12741 tgcn 14622 iscnp4 14632 cnpnei 14633 cnima 14634 cnconst2 14647 cnrest2 14650 cnptoprest 14653 txcnp 14685 txcnmpt 14687 metcnp3 14925 |
| Copyright terms: Public domain | W3C validator |