ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2 GIF version

Theorem imaeq2 5063
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imaeq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem imaeq2
StepHypRef Expression
1 reseq2 4999 . . 3 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
21rneqd 4952 . 2 (𝐴 = 𝐵 → ran (𝐶𝐴) = ran (𝐶𝐵))
3 df-ima 4731 . 2 (𝐶𝐴) = ran (𝐶𝐴)
4 df-ima 4731 . 2 (𝐶𝐵) = ran (𝐶𝐵)
52, 3, 43eqtr4g 2287 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  ran crn 4719  cres 4720  cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  imaeq2i  5065  imaeq2d  5067  fimadmfo  5556  ssimaex  5694  ssimaexg  5695  isoselem  5943  f1opw2  6210  fopwdom  6993  ssenen  7008  fiintim  7089  fidcenumlemrk  7117  fidcenumlemr  7118  sbthlem2  7121  isbth  7130  ennnfonelemp1  12972  ennnfonelemnn0  12988  ctinfomlemom  12993  ctinfom  12994  tgcn  14876  iscnp4  14886  cnpnei  14887  cnima  14888  cnconst2  14901  cnrest2  14904  cnptoprest  14907  txcnp  14939  txcnmpt  14941  metcnp3  15179
  Copyright terms: Public domain W3C validator