ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq2 GIF version

Theorem imaeq2 5027
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imaeq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem imaeq2
StepHypRef Expression
1 reseq2 4963 . . 3 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
21rneqd 4916 . 2 (𝐴 = 𝐵 → ran (𝐶𝐴) = ran (𝐶𝐵))
3 df-ima 4696 . 2 (𝐶𝐴) = ran (𝐶𝐴)
4 df-ima 4696 . 2 (𝐶𝐵) = ran (𝐶𝐵)
52, 3, 43eqtr4g 2264 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  ran crn 4684  cres 4685  cima 4686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696
This theorem is referenced by:  imaeq2i  5029  imaeq2d  5031  fimadmfo  5519  ssimaex  5653  ssimaexg  5654  isoselem  5902  f1opw2  6165  fopwdom  6948  ssenen  6963  fiintim  7043  fidcenumlemrk  7071  fidcenumlemr  7072  sbthlem2  7075  isbth  7084  ennnfonelemp1  12852  ennnfonelemnn0  12868  ctinfomlemom  12873  ctinfom  12874  tgcn  14755  iscnp4  14765  cnpnei  14766  cnima  14767  cnconst2  14780  cnrest2  14783  cnptoprest  14786  txcnp  14818  txcnmpt  14820  metcnp3  15058
  Copyright terms: Public domain W3C validator