![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrre2 | GIF version |
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
xrre2 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfle 9465 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
2 | 1 | adantr 272 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -∞ ≤ 𝐴) |
3 | mnfxr 7740 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
4 | xrlelttr 9476 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) | |
5 | 3, 4 | mp3an1 1283 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) |
6 | 2, 5 | mpand 423 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
7 | 6 | 3adant3 982 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
8 | pnfge 9462 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → 𝐶 ≤ +∞) | |
9 | 8 | adantl 273 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ≤ +∞) |
10 | pnfxr 7736 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
11 | xrltletr 9477 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) | |
12 | 10, 11 | mp3an3 1285 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) |
13 | 9, 12 | mpan2d 422 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
14 | 13 | 3adant1 980 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
15 | 7, 14 | anim12d 331 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
16 | xrrebnd 9489 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) | |
17 | 16 | 3ad2ant2 984 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
18 | 15, 17 | sylibrd 168 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ)) |
19 | 18 | imp 123 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 943 ∈ wcel 1461 class class class wbr 3893 ℝcr 7540 +∞cpnf 7715 -∞cmnf 7716 ℝ*cxr 7717 < clt 7718 ≤ cle 7719 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-po 4176 df-iso 4177 df-xp 4503 df-cnv 4505 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 |
This theorem is referenced by: elioore 9582 tgioo 12526 |
Copyright terms: Public domain | W3C validator |