ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre2 GIF version

Theorem xrre2 9887
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
xrre2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)

Proof of Theorem xrre2
StepHypRef Expression
1 mnfle 9858 . . . . . . 7 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
21adantr 276 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -∞ ≤ 𝐴)
3 mnfxr 8076 . . . . . . 7 -∞ ∈ ℝ*
4 xrlelttr 9872 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴𝐴 < 𝐵) → -∞ < 𝐵))
53, 4mp3an1 1335 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴𝐴 < 𝐵) → -∞ < 𝐵))
62, 5mpand 429 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵))
763adant3 1019 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵))
8 pnfge 9855 . . . . . . 7 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
98adantl 277 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ≤ +∞)
10 pnfxr 8072 . . . . . . 7 +∞ ∈ ℝ*
11 xrltletr 9873 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐵 < 𝐶𝐶 ≤ +∞) → 𝐵 < +∞))
1210, 11mp3an3 1337 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐶𝐶 ≤ +∞) → 𝐵 < +∞))
139, 12mpan2d 428 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶𝐵 < +∞))
14133adant1 1017 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶𝐵 < +∞))
157, 14anim12d 335 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → (-∞ < 𝐵𝐵 < +∞)))
16 xrrebnd 9885 . . . 4 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
17163ad2ant2 1021 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
1815, 17sylibrd 169 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐵 ∈ ℝ))
1918imp 124 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2164   class class class wbr 4029  cr 7871  +∞cpnf 8051  -∞cmnf 8052  *cxr 8053   < clt 8054  cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-po 4327  df-iso 4328  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by:  elioore  9978  tgioo  14714
  Copyright terms: Public domain W3C validator