| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrre2 | GIF version | ||
| Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| xrre2 | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfle 9867 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 2 | 1 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → -∞ ≤ 𝐴) |
| 3 | mnfxr 8083 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 4 | xrlelttr 9881 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) | |
| 5 | 3, 4 | mp3an1 1335 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((-∞ ≤ 𝐴 ∧ 𝐴 < 𝐵) → -∞ < 𝐵)) |
| 6 | 2, 5 | mpand 429 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
| 7 | 6 | 3adant3 1019 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → -∞ < 𝐵)) |
| 8 | pnfge 9864 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → 𝐶 ≤ +∞) | |
| 9 | 8 | adantl 277 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → 𝐶 ≤ +∞) |
| 10 | pnfxr 8079 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 11 | xrltletr 9882 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) | |
| 12 | 10, 11 | mp3an3 1337 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐵 < 𝐶 ∧ 𝐶 ≤ +∞) → 𝐵 < +∞)) |
| 13 | 9, 12 | mpan2d 428 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
| 14 | 13 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → 𝐵 < +∞)) |
| 15 | 7, 14 | anim12d 335 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
| 16 | xrrebnd 9894 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) | |
| 17 | 16 | 3ad2ant2 1021 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵 ∧ 𝐵 < +∞))) |
| 18 | 15, 17 | sylibrd 169 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ)) |
| 19 | 18 | imp 124 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵 ∧ 𝐵 < 𝐶)) → 𝐵 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 +∞cpnf 8058 -∞cmnf 8059 ℝ*cxr 8060 < clt 8061 ≤ cle 8062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-po 4331 df-iso 4332 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: elioore 9987 tgioo 14790 |
| Copyright terms: Public domain | W3C validator |