ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrre GIF version

Theorem xrre 9822
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
Assertion
Ref Expression
xrre (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)

Proof of Theorem xrre
StepHypRef Expression
1 simprl 529 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → -∞ < 𝐴)
2 ltpnf 9782 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
32adantl 277 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 < +∞)
4 rexr 8005 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
5 pnfxr 8012 . . . . . . 7 +∞ ∈ ℝ*
6 xrlelttr 9808 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
75, 6mp3an3 1326 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
84, 7sylan2 286 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
93, 8mpan2d 428 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < +∞))
109imp 124 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴𝐵) → 𝐴 < +∞)
1110adantrl 478 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 < +∞)
12 xrrebnd 9821 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1312ad2antrr 488 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
141, 11, 13mpbir2and 944 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148   class class class wbr 4005  cr 7812  +∞cpnf 7991  -∞cmnf 7992  *cxr 7993   < clt 7994  cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-po 4298  df-iso 4299  df-xp 4634  df-cnv 4636  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000
This theorem is referenced by:  xrrege0  9827  pcgcd1  12329  tgioo  14085
  Copyright terms: Public domain W3C validator