| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coprmdvds2 | GIF version | ||
| Description: If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.) |
| Ref | Expression |
|---|---|
| coprmdvds2 | ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 · 𝑁) ∥ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 12215 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) | |
| 2 | 1 | 3adant1 1018 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) |
| 3 | 2 | adantr 276 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾)) |
| 4 | simprr 531 | . . . . . . . . . . 11 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
| 5 | simpl2 1004 | . . . . . . . . . . 11 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑁 ∈ ℤ) | |
| 6 | zcn 9412 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 7 | zcn 9412 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 8 | mulcom 8089 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) | |
| 9 | 6, 7, 8 | syl2an 289 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) |
| 10 | 4, 5, 9 | syl2anc 411 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑥 · 𝑁) = (𝑁 · 𝑥)) |
| 11 | 10 | breq2d 4071 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀 ∥ (𝑁 · 𝑥))) |
| 12 | simprl 529 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 gcd 𝑁) = 1) | |
| 13 | simpl1 1003 | . . . . . . . . . . 11 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
| 14 | coprmdvds 12529 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∥ 𝑥)) | |
| 15 | 13, 5, 4, 14 | syl3anc 1250 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑀 ∥ (𝑁 · 𝑥) ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∥ 𝑥)) |
| 16 | 12, 15 | mpan2d 428 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑁 · 𝑥) → 𝑀 ∥ 𝑥)) |
| 17 | 11, 16 | sylbid 150 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → 𝑀 ∥ 𝑥)) |
| 18 | dvdsmulc 12245 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) | |
| 19 | 13, 4, 5, 18 | syl3anc 1250 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ 𝑥 → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) |
| 20 | 17, 19 | syld 45 | . . . . . . 7 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → (𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁))) |
| 21 | breq2 4063 | . . . . . . . 8 ⊢ ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ (𝑥 · 𝑁) ↔ 𝑀 ∥ 𝐾)) | |
| 22 | breq2 4063 | . . . . . . . 8 ⊢ ((𝑥 · 𝑁) = 𝐾 → ((𝑀 · 𝑁) ∥ (𝑥 · 𝑁) ↔ (𝑀 · 𝑁) ∥ 𝐾)) | |
| 23 | 21, 22 | imbi12d 234 | . . . . . . 7 ⊢ ((𝑥 · 𝑁) = 𝐾 → ((𝑀 ∥ (𝑥 · 𝑁) → (𝑀 · 𝑁) ∥ (𝑥 · 𝑁)) ↔ (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
| 24 | 20, 23 | syl5ibcom 155 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) = 1 ∧ 𝑥 ∈ ℤ)) → ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
| 25 | 24 | anassrs 400 | . . . . 5 ⊢ ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
| 26 | 25 | rexlimdva 2625 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (∃𝑥 ∈ ℤ (𝑥 · 𝑁) = 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
| 27 | 3, 26 | sylbid 150 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 ∥ 𝐾 → (𝑀 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
| 28 | 27 | com23 78 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 ∥ 𝐾 → (𝑁 ∥ 𝐾 → (𝑀 · 𝑁) ∥ 𝐾))) |
| 29 | 28 | impd 254 | 1 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 · 𝑁) ∥ 𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ∃wrex 2487 class class class wbr 4059 (class class class)co 5967 ℂcc 7958 1c1 7961 · cmul 7965 ℤcz 9407 ∥ cdvds 12213 gcd cgcd 12389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-dvds 12214 df-gcd 12390 |
| This theorem is referenced by: rpmulgcd2 12532 crth 12661 |
| Copyright terms: Public domain | W3C validator |