ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqge GIF version

Theorem flqge 10425
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.)
Assertion
Ref Expression
flqge ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))

Proof of Theorem flqge
StepHypRef Expression
1 flqltp1 10422 . . . . 5 (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1))
21adantr 276 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
3 simpr 110 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
43zred 9495 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
5 qre 9746 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
65adantr 276 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
7 simpl 109 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℚ)
87flqcld 10420 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
98peano2zd 9498 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ)
109zred 9495 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 lelttr 8161 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
124, 6, 10, 11syl3anc 1250 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
132, 12mpan2d 428 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 < ((⌊‘𝐴) + 1)))
14 zleltp1 9428 . . . 4 ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
153, 8, 14syl2anc 411 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
1613, 15sylibrd 169 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
17 flqle 10421 . . . 4 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
1817adantr 276 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
198zred 9495 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
20 letr 8155 . . . 4 ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
214, 19, 6, 20syl3anc 1250 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
2218, 21mpan2d 428 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵𝐴))
2316, 22impbid 129 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  cr 7924  1c1 7926   + caddc 7928   < clt 8107  cle 8108  cz 9372  cq 9740  cfl 10411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776  df-fl 10413
This theorem is referenced by:  flqlt  10426  flid  10427  flqwordi  10431  flqge0nn0  10436  flqge1nn  10437  flqmulnn0  10442  modqmuladdnn0  10513  hashdvds  12543  gausslemma2dlem4  15541  lgsquadlem1  15554  lgsquadlem2  15555
  Copyright terms: Public domain W3C validator