ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqge GIF version

Theorem flqge 10391
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.)
Assertion
Ref Expression
flqge ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))

Proof of Theorem flqge
StepHypRef Expression
1 flqltp1 10388 . . . . 5 (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1))
21adantr 276 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
3 simpr 110 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
43zred 9467 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
5 qre 9718 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
65adantr 276 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
7 simpl 109 . . . . . . . 8 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℚ)
87flqcld 10386 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
98peano2zd 9470 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ)
109zred 9467 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
11 lelttr 8134 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
124, 6, 10, 11syl3anc 1249 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
132, 12mpan2d 428 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 < ((⌊‘𝐴) + 1)))
14 zleltp1 9400 . . . 4 ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
153, 8, 14syl2anc 411 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
1613, 15sylibrd 169 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
17 flqle 10387 . . . 4 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
1817adantr 276 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
198zred 9467 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
20 letr 8128 . . . 4 ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
214, 19, 6, 20syl3anc 1249 . . 3 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
2218, 21mpan2d 428 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵𝐴))
2316, 22impbid 129 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  cr 7897  1c1 7899   + caddc 7901   < clt 8080  cle 8081  cz 9345  cq 9712  cfl 10377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-n0 9269  df-z 9346  df-q 9713  df-rp 9748  df-fl 10379
This theorem is referenced by:  flqlt  10392  flid  10393  flqwordi  10397  flqge0nn0  10402  flqge1nn  10403  flqmulnn0  10408  modqmuladdnn0  10479  hashdvds  12416  gausslemma2dlem4  15413  lgsquadlem1  15426  lgsquadlem2  15427
  Copyright terms: Public domain W3C validator