![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqge | GIF version |
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.) |
Ref | Expression |
---|---|
flqge | ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flqltp1 9575 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1)) | |
2 | 1 | adantr 270 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
3 | simpr 108 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
4 | 3 | zred 8764 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
5 | qre 9005 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
6 | 5 | adantr 270 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
7 | simpl 107 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℚ) | |
8 | 7 | flqcld 9573 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
9 | 8 | peano2zd 8767 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ) |
10 | 9 | zred 8764 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
11 | lelttr 7476 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1))) | |
12 | 4, 6, 10, 11 | syl3anc 1170 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1))) |
13 | 2, 12 | mpan2d 419 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → 𝐵 < ((⌊‘𝐴) + 1))) |
14 | zleltp1 8701 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1))) | |
15 | 3, 8, 14 | syl2anc 403 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1))) |
16 | 13, 15 | sylibrd 167 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → 𝐵 ≤ (⌊‘𝐴))) |
17 | flqle 9574 | . . . 4 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴) | |
18 | 17 | adantr 270 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
19 | 8 | zred 8764 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
20 | letr 7471 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵 ≤ 𝐴)) | |
21 | 4, 19, 6, 20 | syl3anc 1170 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵 ≤ 𝐴)) |
22 | 18, 21 | mpan2d 419 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵 ≤ 𝐴)) |
23 | 16, 22 | impbid 127 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1434 class class class wbr 3811 ‘cfv 4969 (class class class)co 5591 ℝcr 7252 1c1 7254 + caddc 7256 < clt 7425 ≤ cle 7426 ℤcz 8646 ℚcq 8999 ⌊cfl 9564 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-mulrcl 7347 ax-addcom 7348 ax-mulcom 7349 ax-addass 7350 ax-mulass 7351 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-1rid 7355 ax-0id 7356 ax-rnegex 7357 ax-precex 7358 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-apti 7363 ax-pre-ltadd 7364 ax-pre-mulgt0 7365 ax-pre-mulext 7366 ax-arch 7367 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-id 4084 df-po 4087 df-iso 4088 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-reap 7952 df-ap 7959 df-div 8038 df-inn 8317 df-n0 8566 df-z 8647 df-q 9000 df-rp 9030 df-fl 9566 |
This theorem is referenced by: flqlt 9579 flid 9580 flqwordi 9584 flqge0nn0 9589 flqge1nn 9590 flqmulnn0 9595 modqmuladdnn0 9664 hashdvds 10977 |
Copyright terms: Public domain | W3C validator |