![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcpre1 | GIF version |
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
Ref | Expression |
---|---|
pcpre1 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9308 | . . . . . . . . . 10 ⊢ 1 ∈ ℤ | |
2 | eleq1 2252 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ)) | |
3 | 1, 2 | mpbiri 168 | . . . . . . . . 9 ⊢ (𝑁 = 1 → 𝑁 ∈ ℤ) |
4 | 1ne0 9016 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
5 | neeq1 2373 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0)) | |
6 | 4, 5 | mpbiri 168 | . . . . . . . . 9 ⊢ (𝑁 = 1 → 𝑁 ≠ 0) |
7 | 3, 6 | jca 306 | . . . . . . . 8 ⊢ (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) |
8 | pclem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
9 | pclem.2 | . . . . . . . . 9 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
10 | 8, 9 | pcprecl 12320 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
11 | 7, 10 | sylan2 286 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
12 | 11 | simprd 114 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∥ 𝑁) |
13 | simpr 110 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑁 = 1) | |
14 | 12, 13 | breqtrd 4044 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∥ 1) |
15 | eluz2nn 9595 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
16 | 15 | adantr 276 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ) |
17 | 11 | simpld 112 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0) |
18 | 16, 17 | nnexpcld 10706 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∈ ℕ) |
19 | 18 | nnzd 9403 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∈ ℤ) |
20 | 1nn 8959 | . . . . . 6 ⊢ 1 ∈ ℕ | |
21 | dvdsle 11881 | . . . . . 6 ⊢ (((𝑃↑𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃↑𝑆) ∥ 1 → (𝑃↑𝑆) ≤ 1)) | |
22 | 19, 20, 21 | sylancl 413 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → ((𝑃↑𝑆) ∥ 1 → (𝑃↑𝑆) ≤ 1)) |
23 | 14, 22 | mpd 13 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ≤ 1) |
24 | 16 | nncnd 8962 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ) |
25 | 24 | exp0d 10678 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1) |
26 | 23, 25 | breqtrrd 4046 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ≤ (𝑃↑0)) |
27 | 16 | nnred 8961 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ) |
28 | 0nn0 9220 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
29 | 28 | a1i 9 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 0 ∈ ℕ0) |
30 | eluz2gt1 9631 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
31 | 30 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 1 < 𝑃) |
32 | nn0leexp2 10721 | . . . 4 ⊢ (((𝑃 ∈ ℝ ∧ 𝑆 ∈ ℕ0 ∧ 0 ∈ ℕ0) ∧ 1 < 𝑃) → (𝑆 ≤ 0 ↔ (𝑃↑𝑆) ≤ (𝑃↑0))) | |
33 | 27, 17, 29, 31, 32 | syl31anc 1252 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃↑𝑆) ≤ (𝑃↑0))) |
34 | 26, 33 | mpbird 167 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0) |
35 | 10 | simpld 112 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
36 | 7, 35 | sylan2 286 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0) |
37 | nn0le0eq0 9233 | . . 3 ⊢ (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0)) | |
38 | 36, 37 | syl 14 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0)) |
39 | 34, 38 | mpbid 147 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 {crab 2472 class class class wbr 4018 ‘cfv 5235 (class class class)co 5895 supcsup 7010 ℝcr 7839 0cc0 7840 1c1 7841 < clt 8021 ≤ cle 8022 ℕcn 8948 2c2 8999 ℕ0cn0 9205 ℤcz 9282 ℤ≥cuz 9557 ↑cexp 10549 ∥ cdvds 11825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-mulrcl 7939 ax-addcom 7940 ax-mulcom 7941 ax-addass 7942 ax-mulass 7943 ax-distr 7944 ax-i2m1 7945 ax-0lt1 7946 ax-1rid 7947 ax-0id 7948 ax-rnegex 7949 ax-precex 7950 ax-cnre 7951 ax-pre-ltirr 7952 ax-pre-ltwlin 7953 ax-pre-lttrn 7954 ax-pre-apti 7955 ax-pre-ltadd 7956 ax-pre-mulgt0 7957 ax-pre-mulext 7958 ax-arch 7959 ax-caucvg 7960 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-recs 6329 df-frec 6415 df-sup 7012 df-inf 7013 df-pnf 8023 df-mnf 8024 df-xr 8025 df-ltxr 8026 df-le 8027 df-sub 8159 df-neg 8160 df-reap 8561 df-ap 8568 df-div 8659 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-n0 9206 df-z 9283 df-uz 9558 df-q 9649 df-rp 9683 df-fz 10038 df-fzo 10172 df-fl 10300 df-mod 10353 df-seqfrec 10476 df-exp 10550 df-cj 10882 df-re 10883 df-im 10884 df-rsqrt 11038 df-abs 11039 df-dvds 11826 |
This theorem is referenced by: pczpre 12328 pc1 12336 |
Copyright terms: Public domain | W3C validator |