| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcpre1 | GIF version | ||
| Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
| pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
| Ref | Expression |
|---|---|
| pcpre1 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9468 | . . . . . . . . . 10 ⊢ 1 ∈ ℤ | |
| 2 | eleq1 2292 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ)) | |
| 3 | 1, 2 | mpbiri 168 | . . . . . . . . 9 ⊢ (𝑁 = 1 → 𝑁 ∈ ℤ) |
| 4 | 1ne0 9174 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
| 5 | neeq1 2413 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0)) | |
| 6 | 4, 5 | mpbiri 168 | . . . . . . . . 9 ⊢ (𝑁 = 1 → 𝑁 ≠ 0) |
| 7 | 3, 6 | jca 306 | . . . . . . . 8 ⊢ (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) |
| 8 | pclem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
| 9 | pclem.2 | . . . . . . . . 9 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
| 10 | 8, 9 | pcprecl 12807 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
| 11 | 7, 10 | sylan2 286 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
| 12 | 11 | simprd 114 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∥ 𝑁) |
| 13 | simpr 110 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑁 = 1) | |
| 14 | 12, 13 | breqtrd 4108 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∥ 1) |
| 15 | eluz2nn 9757 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
| 16 | 15 | adantr 276 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ) |
| 17 | 11 | simpld 112 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0) |
| 18 | 16, 17 | nnexpcld 10912 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∈ ℕ) |
| 19 | 18 | nnzd 9564 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∈ ℤ) |
| 20 | 1nn 9117 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 21 | dvdsle 12350 | . . . . . 6 ⊢ (((𝑃↑𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃↑𝑆) ∥ 1 → (𝑃↑𝑆) ≤ 1)) | |
| 22 | 19, 20, 21 | sylancl 413 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → ((𝑃↑𝑆) ∥ 1 → (𝑃↑𝑆) ≤ 1)) |
| 23 | 14, 22 | mpd 13 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ≤ 1) |
| 24 | 16 | nncnd 9120 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ) |
| 25 | 24 | exp0d 10884 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1) |
| 26 | 23, 25 | breqtrrd 4110 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ≤ (𝑃↑0)) |
| 27 | 16 | nnred 9119 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ) |
| 28 | 0nn0 9380 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 29 | 28 | a1i 9 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 0 ∈ ℕ0) |
| 30 | eluz2gt1 9793 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
| 31 | 30 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 1 < 𝑃) |
| 32 | nn0leexp2 10927 | . . . 4 ⊢ (((𝑃 ∈ ℝ ∧ 𝑆 ∈ ℕ0 ∧ 0 ∈ ℕ0) ∧ 1 < 𝑃) → (𝑆 ≤ 0 ↔ (𝑃↑𝑆) ≤ (𝑃↑0))) | |
| 33 | 27, 17, 29, 31, 32 | syl31anc 1274 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃↑𝑆) ≤ (𝑃↑0))) |
| 34 | 26, 33 | mpbird 167 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0) |
| 35 | 10 | simpld 112 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
| 36 | 7, 35 | sylan2 286 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0) |
| 37 | nn0le0eq0 9393 | . . 3 ⊢ (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0)) | |
| 38 | 36, 37 | syl 14 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0)) |
| 39 | 34, 38 | mpbid 147 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 {crab 2512 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 supcsup 7145 ℝcr 7994 0cc0 7995 1c1 7996 < clt 8177 ≤ cle 8178 ℕcn 9106 2c2 9157 ℕ0cn0 9365 ℤcz 9442 ℤ≥cuz 9718 ↑cexp 10755 ∥ cdvds 12293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 |
| This theorem is referenced by: pczpre 12815 pc1 12823 |
| Copyright terms: Public domain | W3C validator |