![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcpre1 | GIF version |
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
Ref | Expression |
---|---|
pcpre1 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 9343 | . . . . . . . . . 10 ⊢ 1 ∈ ℤ | |
2 | eleq1 2256 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ)) | |
3 | 1, 2 | mpbiri 168 | . . . . . . . . 9 ⊢ (𝑁 = 1 → 𝑁 ∈ ℤ) |
4 | 1ne0 9050 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
5 | neeq1 2377 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0)) | |
6 | 4, 5 | mpbiri 168 | . . . . . . . . 9 ⊢ (𝑁 = 1 → 𝑁 ≠ 0) |
7 | 3, 6 | jca 306 | . . . . . . . 8 ⊢ (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) |
8 | pclem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
9 | pclem.2 | . . . . . . . . 9 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
10 | 8, 9 | pcprecl 12427 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
11 | 7, 10 | sylan2 286 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
12 | 11 | simprd 114 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∥ 𝑁) |
13 | simpr 110 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑁 = 1) | |
14 | 12, 13 | breqtrd 4055 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∥ 1) |
15 | eluz2nn 9631 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
16 | 15 | adantr 276 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ) |
17 | 11 | simpld 112 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0) |
18 | 16, 17 | nnexpcld 10766 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∈ ℕ) |
19 | 18 | nnzd 9438 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∈ ℤ) |
20 | 1nn 8993 | . . . . . 6 ⊢ 1 ∈ ℕ | |
21 | dvdsle 11986 | . . . . . 6 ⊢ (((𝑃↑𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃↑𝑆) ∥ 1 → (𝑃↑𝑆) ≤ 1)) | |
22 | 19, 20, 21 | sylancl 413 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → ((𝑃↑𝑆) ∥ 1 → (𝑃↑𝑆) ≤ 1)) |
23 | 14, 22 | mpd 13 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ≤ 1) |
24 | 16 | nncnd 8996 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ) |
25 | 24 | exp0d 10738 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1) |
26 | 23, 25 | breqtrrd 4057 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ≤ (𝑃↑0)) |
27 | 16 | nnred 8995 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ) |
28 | 0nn0 9255 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
29 | 28 | a1i 9 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 0 ∈ ℕ0) |
30 | eluz2gt1 9667 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
31 | 30 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 1 < 𝑃) |
32 | nn0leexp2 10781 | . . . 4 ⊢ (((𝑃 ∈ ℝ ∧ 𝑆 ∈ ℕ0 ∧ 0 ∈ ℕ0) ∧ 1 < 𝑃) → (𝑆 ≤ 0 ↔ (𝑃↑𝑆) ≤ (𝑃↑0))) | |
33 | 27, 17, 29, 31, 32 | syl31anc 1252 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃↑𝑆) ≤ (𝑃↑0))) |
34 | 26, 33 | mpbird 167 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0) |
35 | 10 | simpld 112 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
36 | 7, 35 | sylan2 286 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0) |
37 | nn0le0eq0 9268 | . . 3 ⊢ (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0)) | |
38 | 36, 37 | syl 14 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0)) |
39 | 34, 38 | mpbid 147 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 {crab 2476 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 supcsup 7041 ℝcr 7871 0cc0 7872 1c1 7873 < clt 8054 ≤ cle 8055 ℕcn 8982 2c2 9033 ℕ0cn0 9240 ℤcz 9317 ℤ≥cuz 9592 ↑cexp 10609 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-dvds 11931 |
This theorem is referenced by: pczpre 12435 pc1 12443 |
Copyright terms: Public domain | W3C validator |