ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemmu GIF version

Theorem caucvgprprlemmu 7850
Description: Lemma for caucvgprpr 7867. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemmu (𝜑 → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐹,𝑟,𝑢   𝑡,𝐿   𝑞,𝑝,𝑟,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemmu
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . 4 (𝜑𝐹:NP)
2 1pi 7470 . . . . 5 1oN
32a1i 9 . . . 4 (𝜑 → 1oN)
41, 3ffvelcdmd 5744 . . 3 (𝜑 → (𝐹‘1o) ∈ P)
5 prop 7630 . . 3 ((𝐹‘1o) ∈ P → ⟨(1st ‘(𝐹‘1o)), (2nd ‘(𝐹‘1o))⟩ ∈ P)
6 prmu 7633 . . 3 (⟨(1st ‘(𝐹‘1o)), (2nd ‘(𝐹‘1o))⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd ‘(𝐹‘1o)))
74, 5, 63syl 17 . 2 (𝜑 → ∃𝑥Q 𝑥 ∈ (2nd ‘(𝐹‘1o)))
8 simprl 529 . . . 4 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → 𝑥Q)
9 1nq 7521 . . . 4 1QQ
10 addclnq 7530 . . . 4 ((𝑥Q ∧ 1QQ) → (𝑥 +Q 1Q) ∈ Q)
118, 9, 10sylancl 413 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝑥 +Q 1Q) ∈ Q)
122a1i 9 . . . . 5 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → 1oN)
13 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → 𝑥 ∈ (2nd ‘(𝐹‘1o)))
144adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝐹‘1o) ∈ P)
15 nqpru 7707 . . . . . . . . 9 ((𝑥Q ∧ (𝐹‘1o) ∈ P) → (𝑥 ∈ (2nd ‘(𝐹‘1o)) ↔ (𝐹‘1o)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
168, 14, 15syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝑥 ∈ (2nd ‘(𝐹‘1o)) ↔ (𝐹‘1o)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
1713, 16mpbid 147 . . . . . . 7 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝐹‘1o)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
18 ltaprg 7774 . . . . . . . . 9 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
1918adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
20 nqprlu 7702 . . . . . . . . 9 (𝑥Q → ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ∈ P)
218, 20syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ∈ P)
22 nqprlu 7702 . . . . . . . . 9 (1QQ → ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩ ∈ P)
239, 22mp1i 10 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩ ∈ P)
24 addcomprg 7733 . . . . . . . . 9 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2524adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2619, 14, 21, 23, 25caovord2d 6146 . . . . . . 7 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ((𝐹‘1o)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ↔ ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)<P (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)))
2717, 26mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)<P (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
28 df-1nqqs 7506 . . . . . . . . . . . . 13 1Q = [⟨1o, 1o⟩] ~Q
2928fveq2i 5606 . . . . . . . . . . . 12 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
30 rec1nq 7550 . . . . . . . . . . . 12 (*Q‘1Q) = 1Q
3129, 30eqtr3i 2232 . . . . . . . . . . 11 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
3231breq2i 4070 . . . . . . . . . 10 (𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q ) ↔ 𝑝 <Q 1Q)
3332abbii 2325 . . . . . . . . 9 {𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )} = {𝑝𝑝 <Q 1Q}
3431breq1i 4069 . . . . . . . . . 10 ((*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞 ↔ 1Q <Q 𝑞)
3534abbii 2325 . . . . . . . . 9 {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ 1Q <Q 𝑞}
3633, 35opeq12i 3841 . . . . . . . 8 ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩
3736oveq2i 5985 . . . . . . 7 ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)
3837a1i 9 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
39 addnqpr 7716 . . . . . . 7 ((𝑥Q ∧ 1QQ) → ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
408, 9, 39sylancl 413 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
4127, 38, 403brtr4d 4094 . . . . 5 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
42 fveq2 5603 . . . . . . . 8 (𝑟 = 1o → (𝐹𝑟) = (𝐹‘1o))
43 opeq1 3836 . . . . . . . . . . . . 13 (𝑟 = 1o → ⟨𝑟, 1o⟩ = ⟨1o, 1o⟩)
4443eceq1d 6686 . . . . . . . . . . . 12 (𝑟 = 1o → [⟨𝑟, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
4544fveq2d 5607 . . . . . . . . . . 11 (𝑟 = 1o → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
4645breq2d 4074 . . . . . . . . . 10 (𝑟 = 1o → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )))
4746abbidv 2327 . . . . . . . . 9 (𝑟 = 1o → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )})
4845breq1d 4072 . . . . . . . . . 10 (𝑟 = 1o → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞))
4948abbidv 2327 . . . . . . . . 9 (𝑟 = 1o → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞})
5047, 49opeq12d 3844 . . . . . . . 8 (𝑟 = 1o → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩)
5142, 50oveq12d 5992 . . . . . . 7 (𝑟 = 1o → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩))
5251breq1d 4072 . . . . . 6 (𝑟 = 1o → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ ↔ ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
5352rspcev 2887 . . . . 5 ((1oN ∧ ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
5412, 41, 53syl2anc 411 . . . 4 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
55 breq2 4066 . . . . . . . . 9 (𝑢 = (𝑥 +Q 1Q) → (𝑝 <Q 𝑢𝑝 <Q (𝑥 +Q 1Q)))
5655abbidv 2327 . . . . . . . 8 (𝑢 = (𝑥 +Q 1Q) → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q (𝑥 +Q 1Q)})
57 breq1 4065 . . . . . . . . 9 (𝑢 = (𝑥 +Q 1Q) → (𝑢 <Q 𝑞 ↔ (𝑥 +Q 1Q) <Q 𝑞))
5857abbidv 2327 . . . . . . . 8 (𝑢 = (𝑥 +Q 1Q) → {𝑞𝑢 <Q 𝑞} = {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞})
5956, 58opeq12d 3844 . . . . . . 7 (𝑢 = (𝑥 +Q 1Q) → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
6059breq2d 4074 . . . . . 6 (𝑢 = (𝑥 +Q 1Q) → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
6160rexbidv 2511 . . . . 5 (𝑢 = (𝑥 +Q 1Q) → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
62 caucvgprpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6362fveq2i 5606 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
64 nqex 7518 . . . . . . . 8 Q ∈ V
6564rabex 4207 . . . . . . 7 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
6664rabex 4207 . . . . . . 7 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
6765, 66op2nd 6263 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
6863, 67eqtri 2230 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
6961, 68elrab2 2942 . . . 4 ((𝑥 +Q 1Q) ∈ (2nd𝐿) ↔ ((𝑥 +Q 1Q) ∈ Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
7011, 54, 69sylanbrc 417 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝑥 +Q 1Q) ∈ (2nd𝐿))
71 eleq1 2272 . . . 4 (𝑡 = (𝑥 +Q 1Q) → (𝑡 ∈ (2nd𝐿) ↔ (𝑥 +Q 1Q) ∈ (2nd𝐿)))
7271rspcev 2887 . . 3 (((𝑥 +Q 1Q) ∈ Q ∧ (𝑥 +Q 1Q) ∈ (2nd𝐿)) → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
7311, 70, 72syl2anc 411 . 2 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
747, 73rexlimddv 2633 1 (𝜑 → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  {cab 2195  wral 2488  wrex 2489  {crab 2492  cop 3649   class class class wbr 4062  wf 5290  cfv 5294  (class class class)co 5974  1st c1st 6254  2nd c2nd 6255  1oc1o 6525  [cec 6648  Ncnpi 7427   <N clti 7430   ~Q ceq 7434  Qcnq 7435  1Qc1q 7436   +Q cplq 7437  *Qcrq 7439   <Q cltq 7440  Pcnp 7446   +P cpp 7448  <P cltp 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-2o 6533  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-pli 7460  df-mi 7461  df-lti 7462  df-plpq 7499  df-mpq 7500  df-enq 7502  df-nqqs 7503  df-plqqs 7504  df-mqqs 7505  df-1nqqs 7506  df-rq 7507  df-ltnqqs 7508  df-enq0 7579  df-nq0 7580  df-0nq0 7581  df-plq0 7582  df-mq0 7583  df-inp 7621  df-iplp 7623  df-iltp 7625
This theorem is referenced by:  caucvgprprlemm  7851
  Copyright terms: Public domain W3C validator