ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemmu GIF version

Theorem caucvgprprlemmu 7657
Description: Lemma for caucvgprpr 7674. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemmu (𝜑 → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟,𝑚   𝐹,𝑟,𝑢   𝑡,𝐿   𝑞,𝑝,𝑟,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑡,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐹(𝑡,𝑘,𝑛,𝑞,𝑝,𝑙)   𝐿(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemmu
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . 4 (𝜑𝐹:NP)
2 1pi 7277 . . . . 5 1oN
32a1i 9 . . . 4 (𝜑 → 1oN)
41, 3ffvelrnd 5632 . . 3 (𝜑 → (𝐹‘1o) ∈ P)
5 prop 7437 . . 3 ((𝐹‘1o) ∈ P → ⟨(1st ‘(𝐹‘1o)), (2nd ‘(𝐹‘1o))⟩ ∈ P)
6 prmu 7440 . . 3 (⟨(1st ‘(𝐹‘1o)), (2nd ‘(𝐹‘1o))⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (2nd ‘(𝐹‘1o)))
74, 5, 63syl 17 . 2 (𝜑 → ∃𝑥Q 𝑥 ∈ (2nd ‘(𝐹‘1o)))
8 simprl 526 . . . 4 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → 𝑥Q)
9 1nq 7328 . . . 4 1QQ
10 addclnq 7337 . . . 4 ((𝑥Q ∧ 1QQ) → (𝑥 +Q 1Q) ∈ Q)
118, 9, 10sylancl 411 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝑥 +Q 1Q) ∈ Q)
122a1i 9 . . . . 5 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → 1oN)
13 simprr 527 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → 𝑥 ∈ (2nd ‘(𝐹‘1o)))
144adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝐹‘1o) ∈ P)
15 nqpru 7514 . . . . . . . . 9 ((𝑥Q ∧ (𝐹‘1o) ∈ P) → (𝑥 ∈ (2nd ‘(𝐹‘1o)) ↔ (𝐹‘1o)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
168, 14, 15syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝑥 ∈ (2nd ‘(𝐹‘1o)) ↔ (𝐹‘1o)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
1713, 16mpbid 146 . . . . . . 7 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝐹‘1o)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
18 ltaprg 7581 . . . . . . . . 9 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
1918adantl 275 . . . . . . . 8 (((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
20 nqprlu 7509 . . . . . . . . 9 (𝑥Q → ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ∈ P)
218, 20syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ∈ P)
22 nqprlu 7509 . . . . . . . . 9 (1QQ → ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩ ∈ P)
239, 22mp1i 10 . . . . . . . 8 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩ ∈ P)
24 addcomprg 7540 . . . . . . . . 9 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2524adantl 275 . . . . . . . 8 (((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
2619, 14, 21, 23, 25caovord2d 6022 . . . . . . 7 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ((𝐹‘1o)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ↔ ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)<P (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)))
2717, 26mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)<P (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
28 df-1nqqs 7313 . . . . . . . . . . . . 13 1Q = [⟨1o, 1o⟩] ~Q
2928fveq2i 5499 . . . . . . . . . . . 12 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
30 rec1nq 7357 . . . . . . . . . . . 12 (*Q‘1Q) = 1Q
3129, 30eqtr3i 2193 . . . . . . . . . . 11 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
3231breq2i 3997 . . . . . . . . . 10 (𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q ) ↔ 𝑝 <Q 1Q)
3332abbii 2286 . . . . . . . . 9 {𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )} = {𝑝𝑝 <Q 1Q}
3431breq1i 3996 . . . . . . . . . 10 ((*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞 ↔ 1Q <Q 𝑞)
3534abbii 2286 . . . . . . . . 9 {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ 1Q <Q 𝑞}
3633, 35opeq12i 3770 . . . . . . . 8 ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩
3736oveq2i 5864 . . . . . . 7 ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩)
3837a1i 9 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
39 addnqpr 7523 . . . . . . 7 ((𝑥Q ∧ 1QQ) → ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
408, 9, 39sylancl 411 . . . . . 6 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ = (⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ +P ⟨{𝑝𝑝 <Q 1Q}, {𝑞 ∣ 1Q <Q 𝑞}⟩))
4127, 38, 403brtr4d 4021 . . . . 5 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
42 fveq2 5496 . . . . . . . 8 (𝑟 = 1o → (𝐹𝑟) = (𝐹‘1o))
43 opeq1 3765 . . . . . . . . . . . . 13 (𝑟 = 1o → ⟨𝑟, 1o⟩ = ⟨1o, 1o⟩)
4443eceq1d 6549 . . . . . . . . . . . 12 (𝑟 = 1o → [⟨𝑟, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
4544fveq2d 5500 . . . . . . . . . . 11 (𝑟 = 1o → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
4645breq2d 4001 . . . . . . . . . 10 (𝑟 = 1o → (𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )))
4746abbidv 2288 . . . . . . . . 9 (𝑟 = 1o → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )})
4845breq1d 3999 . . . . . . . . . 10 (𝑟 = 1o → ((*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞))
4948abbidv 2288 . . . . . . . . 9 (𝑟 = 1o → {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞})
5047, 49opeq12d 3773 . . . . . . . 8 (𝑟 = 1o → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩)
5142, 50oveq12d 5871 . . . . . . 7 (𝑟 = 1o → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩))
5251breq1d 3999 . . . . . 6 (𝑟 = 1o → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩ ↔ ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
5352rspcev 2834 . . . . 5 ((1oN ∧ ((𝐹‘1o) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨1o, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨1o, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
5412, 41, 53syl2anc 409 . . . 4 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
55 breq2 3993 . . . . . . . . 9 (𝑢 = (𝑥 +Q 1Q) → (𝑝 <Q 𝑢𝑝 <Q (𝑥 +Q 1Q)))
5655abbidv 2288 . . . . . . . 8 (𝑢 = (𝑥 +Q 1Q) → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q (𝑥 +Q 1Q)})
57 breq1 3992 . . . . . . . . 9 (𝑢 = (𝑥 +Q 1Q) → (𝑢 <Q 𝑞 ↔ (𝑥 +Q 1Q) <Q 𝑞))
5857abbidv 2288 . . . . . . . 8 (𝑢 = (𝑥 +Q 1Q) → {𝑞𝑢 <Q 𝑞} = {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞})
5956, 58opeq12d 3773 . . . . . . 7 (𝑢 = (𝑥 +Q 1Q) → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩)
6059breq2d 4001 . . . . . 6 (𝑢 = (𝑥 +Q 1Q) → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
6160rexbidv 2471 . . . . 5 (𝑢 = (𝑥 +Q 1Q) → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
62 caucvgprpr.lim . . . . . . 7 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6362fveq2i 5499 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
64 nqex 7325 . . . . . . . 8 Q ∈ V
6564rabex 4133 . . . . . . 7 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
6664rabex 4133 . . . . . . 7 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
6765, 66op2nd 6126 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
6863, 67eqtri 2191 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
6961, 68elrab2 2889 . . . 4 ((𝑥 +Q 1Q) ∈ (2nd𝐿) ↔ ((𝑥 +Q 1Q) ∈ Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q (𝑥 +Q 1Q)}, {𝑞 ∣ (𝑥 +Q 1Q) <Q 𝑞}⟩))
7011, 54, 69sylanbrc 415 . . 3 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → (𝑥 +Q 1Q) ∈ (2nd𝐿))
71 eleq1 2233 . . . 4 (𝑡 = (𝑥 +Q 1Q) → (𝑡 ∈ (2nd𝐿) ↔ (𝑥 +Q 1Q) ∈ (2nd𝐿)))
7271rspcev 2834 . . 3 (((𝑥 +Q 1Q) ∈ Q ∧ (𝑥 +Q 1Q) ∈ (2nd𝐿)) → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
7311, 70, 72syl2anc 409 . 2 ((𝜑 ∧ (𝑥Q𝑥 ∈ (2nd ‘(𝐹‘1o)))) → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
747, 73rexlimddv 2592 1 (𝜑 → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  {crab 2452  cop 3586   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853  1st c1st 6117  2nd c2nd 6118  1oc1o 6388  [cec 6511  Ncnpi 7234   <N clti 7237   ~Q ceq 7241  Qcnq 7242  1Qc1q 7243   +Q cplq 7244  *Qcrq 7246   <Q cltq 7247  Pcnp 7253   +P cpp 7255  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432
This theorem is referenced by:  caucvgprprlemm  7658
  Copyright terms: Public domain W3C validator