| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgprpr.f | 
. . . 4
⊢ (𝜑 → 𝐹:N⟶P) | 
| 2 |   | 1pi 7382 | 
. . . . 5
⊢
1o ∈ N | 
| 3 | 2 | a1i 9 | 
. . . 4
⊢ (𝜑 → 1o ∈
N) | 
| 4 | 1, 3 | ffvelcdmd 5698 | 
. . 3
⊢ (𝜑 → (𝐹‘1o) ∈
P) | 
| 5 |   | prop 7542 | 
. . 3
⊢ ((𝐹‘1o) ∈
P → 〈(1st ‘(𝐹‘1o)), (2nd
‘(𝐹‘1o))〉 ∈
P) | 
| 6 |   | prmu 7545 | 
. . 3
⊢
(〈(1st ‘(𝐹‘1o)), (2nd
‘(𝐹‘1o))〉 ∈
P → ∃𝑥 ∈ Q 𝑥 ∈ (2nd ‘(𝐹‘1o))) | 
| 7 | 4, 5, 6 | 3syl 17 | 
. 2
⊢ (𝜑 → ∃𝑥 ∈ Q 𝑥 ∈ (2nd ‘(𝐹‘1o))) | 
| 8 |   | simprl 529 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → 𝑥 ∈
Q) | 
| 9 |   | 1nq 7433 | 
. . . 4
⊢
1Q ∈ Q | 
| 10 |   | addclnq 7442 | 
. . . 4
⊢ ((𝑥 ∈ Q ∧
1Q ∈ Q) → (𝑥 +Q
1Q) ∈ Q) | 
| 11 | 8, 9, 10 | sylancl 413 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → (𝑥 +Q
1Q) ∈ Q) | 
| 12 | 2 | a1i 9 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) →
1o ∈ N) | 
| 13 |   | simprr 531 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → 𝑥 ∈ (2nd
‘(𝐹‘1o))) | 
| 14 | 4 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → (𝐹‘1o) ∈
P) | 
| 15 |   | nqpru 7619 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ Q ∧
(𝐹‘1o)
∈ P) → (𝑥 ∈ (2nd ‘(𝐹‘1o)) ↔
(𝐹‘1o)<P
〈{𝑝 ∣ 𝑝 <Q 𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉)) | 
| 16 | 8, 14, 15 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → (𝑥 ∈ (2nd
‘(𝐹‘1o)) ↔ (𝐹‘1o)<P
〈{𝑝 ∣ 𝑝 <Q 𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉)) | 
| 17 | 13, 16 | mpbid 147 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → (𝐹‘1o)<P
〈{𝑝 ∣ 𝑝 <Q 𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉) | 
| 18 |   | ltaprg 7686 | 
. . . . . . . . 9
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) | 
| 19 | 18 | adantl 277 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) ∧ (𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P)) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) | 
| 20 |   | nqprlu 7614 | 
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
〈{𝑝 ∣ 𝑝 <Q
𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉 ∈
P) | 
| 21 | 8, 20 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → 〈{𝑝 ∣ 𝑝 <Q 𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉 ∈
P) | 
| 22 |   | nqprlu 7614 | 
. . . . . . . . 9
⊢
(1Q ∈ Q → 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉 ∈
P) | 
| 23 | 9, 22 | mp1i 10 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉 ∈
P) | 
| 24 |   | addcomprg 7645 | 
. . . . . . . . 9
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) | 
| 25 | 24 | adantl 277 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) ∧ (𝑓 ∈ P ∧
𝑔 ∈ P))
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) | 
| 26 | 19, 14, 21, 23, 25 | caovord2d 6093 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → ((𝐹‘1o)<P
〈{𝑝 ∣ 𝑝 <Q 𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉 ↔ ((𝐹‘1o) +P
〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞
∣ 1Q <Q 𝑞}〉)<P (〈{𝑝 ∣ 𝑝 <Q 𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉 +P 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞
∣ 1Q <Q 𝑞}〉))) | 
| 27 | 17, 26 | mpbid 147 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉)<P
(〈{𝑝 ∣ 𝑝 <Q
𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉)) | 
| 28 |   | df-1nqqs 7418 | 
. . . . . . . . . . . . 13
⊢
1Q = [〈1o, 1o〉]
~Q | 
| 29 | 28 | fveq2i 5561 | 
. . . . . . . . . . . 12
⊢
(*Q‘1Q) =
(*Q‘[〈1o, 1o〉]
~Q ) | 
| 30 |   | rec1nq 7462 | 
. . . . . . . . . . . 12
⊢
(*Q‘1Q) =
1Q | 
| 31 | 29, 30 | eqtr3i 2219 | 
. . . . . . . . . . 11
⊢
(*Q‘[〈1o,
1o〉] ~Q ) =
1Q | 
| 32 | 31 | breq2i 4041 | 
. . . . . . . . . 10
⊢ (𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q ) ↔ 𝑝 <Q
1Q) | 
| 33 | 32 | abbii 2312 | 
. . . . . . . . 9
⊢ {𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )} = {𝑝 ∣ 𝑝 <Q
1Q} | 
| 34 | 31 | breq1i 4040 | 
. . . . . . . . . 10
⊢
((*Q‘[〈1o,
1o〉] ~Q )
<Q 𝑞 ↔ 1Q
<Q 𝑞) | 
| 35 | 34 | abbii 2312 | 
. . . . . . . . 9
⊢ {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞} = {𝑞 ∣ 1Q
<Q 𝑞} | 
| 36 | 33, 35 | opeq12i 3813 | 
. . . . . . . 8
⊢
〈{𝑝 ∣
𝑝
<Q
(*Q‘[〈1o, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉 | 
| 37 | 36 | oveq2i 5933 | 
. . . . . . 7
⊢ ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉) | 
| 38 | 37 | a1i 9 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉)) | 
| 39 |   | addnqpr 7628 | 
. . . . . . 7
⊢ ((𝑥 ∈ Q ∧
1Q ∈ Q) → 〈{𝑝 ∣ 𝑝 <Q (𝑥 +Q
1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉 = (〈{𝑝 ∣ 𝑝 <Q 𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉)) | 
| 40 | 8, 9, 39 | sylancl 413 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → 〈{𝑝 ∣ 𝑝 <Q (𝑥 +Q
1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉 = (〈{𝑝 ∣ 𝑝 <Q 𝑥}, {𝑞 ∣ 𝑥 <Q 𝑞}〉
+P 〈{𝑝 ∣ 𝑝 <Q
1Q}, {𝑞 ∣ 1Q
<Q 𝑞}〉)) | 
| 41 | 27, 38, 40 | 3brtr4d 4065 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉) | 
| 42 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑟 = 1o → (𝐹‘𝑟) = (𝐹‘1o)) | 
| 43 |   | opeq1 3808 | 
. . . . . . . . . . . . 13
⊢ (𝑟 = 1o →
〈𝑟,
1o〉 = 〈1o,
1o〉) | 
| 44 | 43 | eceq1d 6628 | 
. . . . . . . . . . . 12
⊢ (𝑟 = 1o →
[〈𝑟,
1o〉] ~Q = [〈1o,
1o〉] ~Q ) | 
| 45 | 44 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (𝑟 = 1o →
(*Q‘[〈𝑟, 1o〉]
~Q ) =
(*Q‘[〈1o, 1o〉]
~Q )) | 
| 46 | 45 | breq2d 4045 | 
. . . . . . . . . 10
⊢ (𝑟 = 1o → (𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q ) ↔ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q ))) | 
| 47 | 46 | abbidv 2314 | 
. . . . . . . . 9
⊢ (𝑟 = 1o → {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )}) | 
| 48 | 45 | breq1d 4043 | 
. . . . . . . . . 10
⊢ (𝑟 = 1o →
((*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞 ↔
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞)) | 
| 49 | 48 | abbidv 2314 | 
. . . . . . . . 9
⊢ (𝑟 = 1o → {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞} = {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}) | 
| 50 | 47, 49 | opeq12d 3816 | 
. . . . . . . 8
⊢ (𝑟 = 1o →
〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}〉) | 
| 51 | 42, 50 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑟 = 1o → ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉) = ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 52 | 51 | breq1d 4043 | 
. . . . . 6
⊢ (𝑟 = 1o → (((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉 ↔ ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉)) | 
| 53 | 52 | rspcev 2868 | 
. . . . 5
⊢
((1o ∈ N ∧ ((𝐹‘1o)
+P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈1o, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈1o, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉) → ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉) | 
| 54 | 12, 41, 53 | syl2anc 411 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉) | 
| 55 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝑢 = (𝑥 +Q
1Q) → (𝑝 <Q 𝑢 ↔ 𝑝 <Q (𝑥 +Q
1Q))) | 
| 56 | 55 | abbidv 2314 | 
. . . . . . . 8
⊢ (𝑢 = (𝑥 +Q
1Q) → {𝑝 ∣ 𝑝 <Q 𝑢} = {𝑝 ∣ 𝑝 <Q (𝑥 +Q
1Q)}) | 
| 57 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑢 = (𝑥 +Q
1Q) → (𝑢 <Q 𝑞 ↔ (𝑥 +Q
1Q) <Q 𝑞)) | 
| 58 | 57 | abbidv 2314 | 
. . . . . . . 8
⊢ (𝑢 = (𝑥 +Q
1Q) → {𝑞 ∣ 𝑢 <Q 𝑞} = {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}) | 
| 59 | 56, 58 | opeq12d 3816 | 
. . . . . . 7
⊢ (𝑢 = (𝑥 +Q
1Q) → 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑥 +Q
1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉) | 
| 60 | 59 | breq2d 4045 | 
. . . . . 6
⊢ (𝑢 = (𝑥 +Q
1Q) → (((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉 ↔ ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉)) | 
| 61 | 60 | rexbidv 2498 | 
. . . . 5
⊢ (𝑢 = (𝑥 +Q
1Q) → (∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉 ↔ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉)) | 
| 62 |   | caucvgprpr.lim | 
. . . . . . 7
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 | 
| 63 | 62 | fveq2i 5561 | 
. . . . . 6
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) | 
| 64 |   | nqex 7430 | 
. . . . . . . 8
⊢
Q ∈ V | 
| 65 | 64 | rabex 4177 | 
. . . . . . 7
⊢ {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} ∈ V | 
| 66 | 64 | rabex 4177 | 
. . . . . . 7
⊢ {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} ∈
V | 
| 67 | 65, 66 | op2nd 6205 | 
. . . . . 6
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) = {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} | 
| 68 | 63, 67 | eqtri 2217 | 
. . . . 5
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} | 
| 69 | 61, 68 | elrab2 2923 | 
. . . 4
⊢ ((𝑥 +Q
1Q) ∈ (2nd ‘𝐿) ↔ ((𝑥 +Q
1Q) ∈ Q ∧ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
(𝑥
+Q 1Q)}, {𝑞 ∣ (𝑥 +Q
1Q) <Q 𝑞}〉)) | 
| 70 | 11, 54, 69 | sylanbrc 417 | 
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → (𝑥 +Q
1Q) ∈ (2nd ‘𝐿)) | 
| 71 |   | eleq1 2259 | 
. . . 4
⊢ (𝑡 = (𝑥 +Q
1Q) → (𝑡 ∈ (2nd ‘𝐿) ↔ (𝑥 +Q
1Q) ∈ (2nd ‘𝐿))) | 
| 72 | 71 | rspcev 2868 | 
. . 3
⊢ (((𝑥 +Q
1Q) ∈ Q ∧ (𝑥 +Q
1Q) ∈ (2nd ‘𝐿)) → ∃𝑡 ∈ Q 𝑡 ∈ (2nd ‘𝐿)) | 
| 73 | 11, 70, 72 | syl2anc 411 | 
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (2nd
‘(𝐹‘1o)))) → ∃𝑡 ∈ Q 𝑡 ∈ (2nd
‘𝐿)) | 
| 74 | 7, 73 | rexlimddv 2619 | 
1
⊢ (𝜑 → ∃𝑡 ∈ Q 𝑡 ∈ (2nd ‘𝐿)) |