ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndomo GIF version

Theorem nndomo 6634
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomo
StepHypRef Expression
1 php5dom 6633 . . . . . . . 8 (𝐵 ∈ ω → ¬ suc 𝐵𝐵)
21ad2antlr 474 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐵)
3 domtr 6556 . . . . . . . . 9 ((suc 𝐵𝐴𝐴𝐵) → suc 𝐵𝐵)
43expcom 115 . . . . . . . 8 (𝐴𝐵 → (suc 𝐵𝐴 → suc 𝐵𝐵))
54adantl 272 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (suc 𝐵𝐴 → suc 𝐵𝐵))
62, 5mtod 625 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐴)
7 ssdomg 6549 . . . . . . 7 (𝐴 ∈ ω → (suc 𝐵𝐴 → suc 𝐵𝐴))
87ad2antrr 473 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (suc 𝐵𝐴 → suc 𝐵𝐴))
96, 8mtod 625 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐴)
10 nnord 4439 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
11 ordsucss 4334 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
1210, 11syl 14 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
1312ad2antrr 473 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐵𝐴 → suc 𝐵𝐴))
149, 13mtod 625 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
15 nntri1 6271 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1615adantr 271 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1714, 16mpbird 166 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
1817ex 114 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
19 ssdomg 6549 . . 3 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
2019adantl 272 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
2118, 20impbid 128 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1439  wss 3000   class class class wbr 3851  Ord word 4198  suc csuc 4201  ωcom 4418  cdom 6510
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-er 6306  df-en 6512  df-dom 6513
This theorem is referenced by:  fisbth  6653  fientri3  6679  hashennnuni  10248  fihashdom  10272
  Copyright terms: Public domain W3C validator