ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndomo GIF version

Theorem nndomo 6867
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomo
StepHypRef Expression
1 php5dom 6866 . . . . . . . 8 (𝐵 ∈ ω → ¬ suc 𝐵𝐵)
21ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐵)
3 domtr 6788 . . . . . . . . 9 ((suc 𝐵𝐴𝐴𝐵) → suc 𝐵𝐵)
43expcom 116 . . . . . . . 8 (𝐴𝐵 → (suc 𝐵𝐴 → suc 𝐵𝐵))
54adantl 277 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (suc 𝐵𝐴 → suc 𝐵𝐵))
62, 5mtod 663 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐴)
7 ssdomg 6781 . . . . . . 7 (𝐴 ∈ ω → (suc 𝐵𝐴 → suc 𝐵𝐴))
87ad2antrr 488 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (suc 𝐵𝐴 → suc 𝐵𝐴))
96, 8mtod 663 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐴)
10 nnord 4613 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
11 ordsucss 4505 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
1210, 11syl 14 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
1312ad2antrr 488 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐵𝐴 → suc 𝐵𝐴))
149, 13mtod 663 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
15 nntri1 6500 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1615adantr 276 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1714, 16mpbird 167 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
1817ex 115 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
19 ssdomg 6781 . . 3 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
2019adantl 277 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
2118, 20impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2148  wss 3131   class class class wbr 4005  Ord word 4364  suc csuc 4367  ωcom 4591  cdom 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-er 6538  df-en 6744  df-dom 6745
This theorem is referenced by:  fisbth  6886  fientri3  6917  hashennnuni  10762  fihashdom  10786  pwf1oexmid  14911
  Copyright terms: Public domain W3C validator