| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nndomo | GIF version | ||
| Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| nndomo | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | php5dom 6924 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ¬ suc 𝐵 ≼ 𝐵) | |
| 2 | 1 | ad2antlr 489 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ≼ 𝐵) | 
| 3 | domtr 6844 | . . . . . . . . 9 ⊢ ((suc 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → suc 𝐵 ≼ 𝐵) | |
| 4 | 3 | expcom 116 | . . . . . . . 8 ⊢ (𝐴 ≼ 𝐵 → (suc 𝐵 ≼ 𝐴 → suc 𝐵 ≼ 𝐵)) | 
| 5 | 4 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (suc 𝐵 ≼ 𝐴 → suc 𝐵 ≼ 𝐵)) | 
| 6 | 2, 5 | mtod 664 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ≼ 𝐴) | 
| 7 | ssdomg 6837 | . . . . . . 7 ⊢ (𝐴 ∈ ω → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) | |
| 8 | 7 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) | 
| 9 | 6, 8 | mtod 664 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ⊆ 𝐴) | 
| 10 | nnord 4648 | . . . . . . 7 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 11 | ordsucss 4540 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
| 12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | 
| 13 | 12 | ad2antrr 488 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | 
| 14 | 9, 13 | mtod 664 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ∈ 𝐴) | 
| 15 | nntri1 6554 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 16 | 15 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | 
| 17 | 14, 16 | mpbird 167 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → 𝐴 ⊆ 𝐵) | 
| 18 | 17 | ex 115 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) | 
| 19 | ssdomg 6837 | . . 3 ⊢ (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
| 20 | 19 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | 
| 21 | 18, 20 | impbid 129 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 ⊆ wss 3157 class class class wbr 4033 Ord word 4397 suc csuc 4400 ωcom 4626 ≼ cdom 6798 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-er 6592 df-en 6800 df-dom 6801 | 
| This theorem is referenced by: fisbth 6944 fientri3 6976 hashennnuni 10871 fihashdom 10895 pwf1oexmid 15644 | 
| Copyright terms: Public domain | W3C validator |