| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nndomo | GIF version | ||
| Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
| Ref | Expression |
|---|---|
| nndomo | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | php5dom 6962 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ¬ suc 𝐵 ≼ 𝐵) | |
| 2 | 1 | ad2antlr 489 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ≼ 𝐵) |
| 3 | domtr 6879 | . . . . . . . . 9 ⊢ ((suc 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → suc 𝐵 ≼ 𝐵) | |
| 4 | 3 | expcom 116 | . . . . . . . 8 ⊢ (𝐴 ≼ 𝐵 → (suc 𝐵 ≼ 𝐴 → suc 𝐵 ≼ 𝐵)) |
| 5 | 4 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (suc 𝐵 ≼ 𝐴 → suc 𝐵 ≼ 𝐵)) |
| 6 | 2, 5 | mtod 665 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ≼ 𝐴) |
| 7 | ssdomg 6872 | . . . . . . 7 ⊢ (𝐴 ∈ ω → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) | |
| 8 | 7 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) |
| 9 | 6, 8 | mtod 665 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ⊆ 𝐴) |
| 10 | nnord 4661 | . . . . . . 7 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 11 | ordsucss 4553 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
| 12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
| 13 | 12 | ad2antrr 488 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
| 14 | 9, 13 | mtod 665 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ∈ 𝐴) |
| 15 | nntri1 6584 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 16 | 15 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| 17 | 14, 16 | mpbird 167 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → 𝐴 ⊆ 𝐵) |
| 18 | 17 | ex 115 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 19 | ssdomg 6872 | . . 3 ⊢ (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
| 20 | 19 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
| 21 | 18, 20 | impbid 129 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 ⊆ wss 3166 class class class wbr 4045 Ord word 4410 suc csuc 4413 ωcom 4639 ≼ cdom 6828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-er 6622 df-en 6830 df-dom 6831 |
| This theorem is referenced by: fisbth 6982 fientri3 7014 hashennnuni 10926 fihashdom 10950 pwf1oexmid 15973 |
| Copyright terms: Public domain | W3C validator |