![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nndomo | GIF version |
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
nndomo | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | php5dom 6863 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ¬ suc 𝐵 ≼ 𝐵) | |
2 | 1 | ad2antlr 489 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ≼ 𝐵) |
3 | domtr 6785 | . . . . . . . . 9 ⊢ ((suc 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → suc 𝐵 ≼ 𝐵) | |
4 | 3 | expcom 116 | . . . . . . . 8 ⊢ (𝐴 ≼ 𝐵 → (suc 𝐵 ≼ 𝐴 → suc 𝐵 ≼ 𝐵)) |
5 | 4 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (suc 𝐵 ≼ 𝐴 → suc 𝐵 ≼ 𝐵)) |
6 | 2, 5 | mtod 663 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ≼ 𝐴) |
7 | ssdomg 6778 | . . . . . . 7 ⊢ (𝐴 ∈ ω → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) | |
8 | 7 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) |
9 | 6, 8 | mtod 663 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ⊆ 𝐴) |
10 | nnord 4612 | . . . . . . 7 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
11 | ordsucss 4504 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
13 | 12 | ad2antrr 488 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
14 | 9, 13 | mtod 663 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ∈ 𝐴) |
15 | nntri1 6497 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
16 | 15 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
17 | 14, 16 | mpbird 167 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → 𝐴 ⊆ 𝐵) |
18 | 17 | ex 115 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
19 | ssdomg 6778 | . . 3 ⊢ (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
20 | 19 | adantl 277 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
21 | 18, 20 | impbid 129 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ⊆ wss 3130 class class class wbr 4004 Ord word 4363 suc csuc 4366 ωcom 4590 ≼ cdom 6739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-er 6535 df-en 6741 df-dom 6742 |
This theorem is referenced by: fisbth 6883 fientri3 6914 hashennnuni 10759 fihashdom 10783 pwf1oexmid 14752 |
Copyright terms: Public domain | W3C validator |