ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndomo GIF version

Theorem nndomo 6766
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomo
StepHypRef Expression
1 php5dom 6765 . . . . . . . 8 (𝐵 ∈ ω → ¬ suc 𝐵𝐵)
21ad2antlr 481 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐵)
3 domtr 6687 . . . . . . . . 9 ((suc 𝐵𝐴𝐴𝐵) → suc 𝐵𝐵)
43expcom 115 . . . . . . . 8 (𝐴𝐵 → (suc 𝐵𝐴 → suc 𝐵𝐵))
54adantl 275 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (suc 𝐵𝐴 → suc 𝐵𝐵))
62, 5mtod 653 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐴)
7 ssdomg 6680 . . . . . . 7 (𝐴 ∈ ω → (suc 𝐵𝐴 → suc 𝐵𝐴))
87ad2antrr 480 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (suc 𝐵𝐴 → suc 𝐵𝐴))
96, 8mtod 653 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐴)
10 nnord 4533 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
11 ordsucss 4428 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
1210, 11syl 14 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
1312ad2antrr 480 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐵𝐴 → suc 𝐵𝐴))
149, 13mtod 653 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
15 nntri1 6400 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1615adantr 274 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1714, 16mpbird 166 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
1817ex 114 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
19 ssdomg 6680 . . 3 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
2019adantl 275 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
2118, 20impbid 128 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1481  wss 3076   class class class wbr 3937  Ord word 4292  suc csuc 4295  ωcom 4512  cdom 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-er 6437  df-en 6643  df-dom 6644
This theorem is referenced by:  fisbth  6785  fientri3  6811  hashennnuni  10557  fihashdom  10581  pwf1oexmid  13367
  Copyright terms: Public domain W3C validator