Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndomo | GIF version |
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
nndomo | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | php5dom 6841 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ¬ suc 𝐵 ≼ 𝐵) | |
2 | 1 | ad2antlr 486 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ≼ 𝐵) |
3 | domtr 6763 | . . . . . . . . 9 ⊢ ((suc 𝐵 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → suc 𝐵 ≼ 𝐵) | |
4 | 3 | expcom 115 | . . . . . . . 8 ⊢ (𝐴 ≼ 𝐵 → (suc 𝐵 ≼ 𝐴 → suc 𝐵 ≼ 𝐵)) |
5 | 4 | adantl 275 | . . . . . . 7 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (suc 𝐵 ≼ 𝐴 → suc 𝐵 ≼ 𝐵)) |
6 | 2, 5 | mtod 658 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ≼ 𝐴) |
7 | ssdomg 6756 | . . . . . . 7 ⊢ (𝐴 ∈ ω → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) | |
8 | 7 | ad2antrr 485 | . . . . . 6 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (suc 𝐵 ⊆ 𝐴 → suc 𝐵 ≼ 𝐴)) |
9 | 6, 8 | mtod 658 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ suc 𝐵 ⊆ 𝐴) |
10 | nnord 4596 | . . . . . . 7 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
11 | ordsucss 4488 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | |
12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
13 | 12 | ad2antrr 485 | . . . . 5 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
14 | 9, 13 | mtod 658 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ∈ 𝐴) |
15 | nntri1 6475 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
16 | 15 | adantr 274 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
17 | 14, 16 | mpbird 166 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴 ≼ 𝐵) → 𝐴 ⊆ 𝐵) |
18 | 17 | ex 114 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
19 | ssdomg 6756 | . . 3 ⊢ (𝐵 ∈ ω → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
20 | 19 | adantl 275 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
21 | 18, 20 | impbid 128 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3989 Ord word 4347 suc csuc 4350 ωcom 4574 ≼ cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-dom 6720 |
This theorem is referenced by: fisbth 6861 fientri3 6892 hashennnuni 10713 fihashdom 10738 pwf1oexmid 14032 |
Copyright terms: Public domain | W3C validator |