ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndomo GIF version

Theorem nndomo 6751
Description: Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
nndomo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomo
StepHypRef Expression
1 php5dom 6750 . . . . . . . 8 (𝐵 ∈ ω → ¬ suc 𝐵𝐵)
21ad2antlr 480 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐵)
3 domtr 6672 . . . . . . . . 9 ((suc 𝐵𝐴𝐴𝐵) → suc 𝐵𝐵)
43expcom 115 . . . . . . . 8 (𝐴𝐵 → (suc 𝐵𝐴 → suc 𝐵𝐵))
54adantl 275 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (suc 𝐵𝐴 → suc 𝐵𝐵))
62, 5mtod 652 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐴)
7 ssdomg 6665 . . . . . . 7 (𝐴 ∈ ω → (suc 𝐵𝐴 → suc 𝐵𝐴))
87ad2antrr 479 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (suc 𝐵𝐴 → suc 𝐵𝐴))
96, 8mtod 652 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ suc 𝐵𝐴)
10 nnord 4520 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
11 ordsucss 4415 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
1210, 11syl 14 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
1312ad2antrr 479 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐵𝐴 → suc 𝐵𝐴))
149, 13mtod 652 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐵𝐴)
15 nntri1 6385 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1615adantr 274 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1714, 16mpbird 166 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴𝐵)
1817ex 114 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
19 ssdomg 6665 . . 3 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
2019adantl 275 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
2118, 20impbid 128 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1480  wss 3066   class class class wbr 3924  Ord word 4279  suc csuc 4282  ωcom 4499  cdom 6626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-er 6422  df-en 6628  df-dom 6629
This theorem is referenced by:  fisbth  6770  fientri3  6796  hashennnuni  10518  fihashdom  10542  pwf1oexmid  13183
  Copyright terms: Public domain W3C validator