ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn GIF version

Theorem elnn 4652
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
elnn ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)

Proof of Theorem elnn
StepHypRef Expression
1 elomssom 4651 . 2 (𝐵 ∈ ω → 𝐵 ⊆ ω)
2 ssel2 3187 . . 3 ((𝐵 ⊆ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
32ancoms 268 . 2 ((𝐴𝐵𝐵 ⊆ ω) → 𝐴 ∈ ω)
41, 3sylan2 286 1 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wss 3165  ωcom 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4416  df-iom 4637
This theorem is referenced by:  ordom  4653  peano2b  4661  nntr2  6579  nndifsnid  6583  nnaordi  6584  nnmordi  6592  fidceq  6948  nnwetri  6995  enumctlemm  7198  nninfwlpoimlemg  7259  nninfwlpoimlemginf  7260  2onetap  7349  2omotaplemap  7351  nninfinf  10569  ennnfonelemdm  12710  ennnfonelemnn0  12712  xpscf  13097  nnti  15793  nninfsellemdc  15811  nninfsellemeq  15815  nninfsellemeqinf  15817
  Copyright terms: Public domain W3C validator