Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn | GIF version |
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elomssom 4577 | . 2 ⊢ (𝐵 ∈ ω → 𝐵 ⊆ ω) | |
2 | ssel2 3133 | . . 3 ⊢ ((𝐵 ⊆ ω ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ω) | |
3 | 2 | ancoms 266 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ⊆ ω) → 𝐴 ∈ ω) |
4 | 1, 3 | sylan2 284 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2135 ⊆ wss 3112 ωcom 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-iinf 4560 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-v 2724 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-uni 3785 df-int 3820 df-suc 4344 df-iom 4563 |
This theorem is referenced by: ordom 4579 peano2b 4587 nntr2 6463 nndifsnid 6467 nnaordi 6468 nnmordi 6476 fidceq 6827 nnwetri 6873 enumctlemm 7071 ennnfonelemdm 12316 ennnfonelemnn0 12318 nnti 13736 nninfsellemdc 13752 nninfsellemeq 13756 nninfsellemeqinf 13758 |
Copyright terms: Public domain | W3C validator |