ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn GIF version

Theorem elnn 4527
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
elnn ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)

Proof of Theorem elnn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3125 . . 3 (𝑦 = ∅ → (𝑦 ⊆ ω ↔ ∅ ⊆ ω))
2 sseq1 3125 . . 3 (𝑦 = 𝑥 → (𝑦 ⊆ ω ↔ 𝑥 ⊆ ω))
3 sseq1 3125 . . 3 (𝑦 = suc 𝑥 → (𝑦 ⊆ ω ↔ suc 𝑥 ⊆ ω))
4 sseq1 3125 . . 3 (𝑦 = 𝐵 → (𝑦 ⊆ ω ↔ 𝐵 ⊆ ω))
5 0ss 3406 . . 3 ∅ ⊆ ω
6 unss 3255 . . . . . 6 ((𝑥 ⊆ ω ∧ {𝑥} ⊆ ω) ↔ (𝑥 ∪ {𝑥}) ⊆ ω)
7 vex 2692 . . . . . . . 8 𝑥 ∈ V
87snss 3657 . . . . . . 7 (𝑥 ∈ ω ↔ {𝑥} ⊆ ω)
98anbi2i 453 . . . . . 6 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ (𝑥 ⊆ ω ∧ {𝑥} ⊆ ω))
10 df-suc 4301 . . . . . . 7 suc 𝑥 = (𝑥 ∪ {𝑥})
1110sseq1i 3128 . . . . . 6 (suc 𝑥 ⊆ ω ↔ (𝑥 ∪ {𝑥}) ⊆ ω)
126, 9, 113bitr4i 211 . . . . 5 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) ↔ suc 𝑥 ⊆ ω)
1312biimpi 119 . . . 4 ((𝑥 ⊆ ω ∧ 𝑥 ∈ ω) → suc 𝑥 ⊆ ω)
1413expcom 115 . . 3 (𝑥 ∈ ω → (𝑥 ⊆ ω → suc 𝑥 ⊆ ω))
151, 2, 3, 4, 5, 14finds 4522 . 2 (𝐵 ∈ ω → 𝐵 ⊆ ω)
16 ssel2 3097 . . 3 ((𝐵 ⊆ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
1716ancoms 266 . 2 ((𝐴𝐵𝐵 ⊆ ω) → 𝐴 ∈ ω)
1815, 17sylan2 284 1 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1481  cun 3074  wss 3076  c0 3368  {csn 3532  suc csuc 4295  ωcom 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-suc 4301  df-iom 4513
This theorem is referenced by:  ordom  4528  peano2b  4536  nntr2  6407  nndifsnid  6411  nnaordi  6412  nnmordi  6420  fidceq  6771  nnwetri  6812  enumctlemm  7007  ennnfonelemdm  11969  ennnfonelemnn0  11971  nnti  13362  nninfsellemdc  13381  nninfsellemeq  13385  nninfsellemeqinf  13387
  Copyright terms: Public domain W3C validator