| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn | GIF version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elomssom 4696 | . 2 ⊢ (𝐵 ∈ ω → 𝐵 ⊆ ω) | |
| 2 | ssel2 3219 | . . 3 ⊢ ((𝐵 ⊆ ω ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ω) | |
| 3 | 2 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ⊆ ω) → 𝐴 ∈ ω) |
| 4 | 1, 3 | sylan2 286 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ⊆ wss 3197 ωcom 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 |
| This theorem is referenced by: ordom 4698 peano2b 4706 nntr2 6647 nndifsnid 6651 nnaordi 6652 nnmordi 6660 fidceq 7027 nnwetri 7074 enumctlemm 7277 nninfwlpoimlemg 7338 nninfwlpoimlemginf 7339 2onetap 7437 2omotaplemap 7439 nninfinf 10660 ennnfonelemdm 12986 ennnfonelemnn0 12988 xpscf 13375 nnti 16315 nninfsellemdc 16335 nninfsellemeq 16339 nninfsellemeqinf 16341 |
| Copyright terms: Public domain | W3C validator |