Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elnn | GIF version |
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elomssom 4582 | . 2 ⊢ (𝐵 ∈ ω → 𝐵 ⊆ ω) | |
2 | ssel2 3137 | . . 3 ⊢ ((𝐵 ⊆ ω ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ω) | |
3 | 2 | ancoms 266 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ⊆ ω) → 𝐴 ∈ ω) |
4 | 1, 3 | sylan2 284 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ⊆ wss 3116 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: ordom 4584 peano2b 4592 nntr2 6471 nndifsnid 6475 nnaordi 6476 nnmordi 6484 fidceq 6835 nnwetri 6881 enumctlemm 7079 ennnfonelemdm 12353 ennnfonelemnn0 12355 nnti 13874 nninfsellemdc 13890 nninfsellemeq 13894 nninfsellemeqinf 13896 |
Copyright terms: Public domain | W3C validator |