![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnn | GIF version |
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elomssom 4637 | . 2 ⊢ (𝐵 ∈ ω → 𝐵 ⊆ ω) | |
2 | ssel2 3174 | . . 3 ⊢ ((𝐵 ⊆ ω ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ ω) | |
3 | 2 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ⊆ ω) → 𝐴 ∈ ω) |
4 | 1, 3 | sylan2 286 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ⊆ wss 3153 ωcom 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 |
This theorem is referenced by: ordom 4639 peano2b 4647 nntr2 6556 nndifsnid 6560 nnaordi 6561 nnmordi 6569 fidceq 6925 nnwetri 6972 enumctlemm 7173 nninfwlpoimlemg 7234 nninfwlpoimlemginf 7235 2onetap 7315 2omotaplemap 7317 nninfinf 10514 ennnfonelemdm 12577 ennnfonelemnn0 12579 xpscf 12930 nnti 15485 nninfsellemdc 15500 nninfsellemeq 15504 nninfsellemeqinf 15506 |
Copyright terms: Public domain | W3C validator |