| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 9636 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | eqid 2196 |
. 2
⊢
(ℤ≥‘𝐾) = (ℤ≥‘𝐾) |
| 3 | | halfre 9204 |
. . 3
⊢ (1 / 2)
∈ ℝ |
| 4 | 3 | a1i 9 |
. 2
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
| 5 | | halflt1 9208 |
. . 3
⊢ (1 / 2)
< 1 |
| 6 | 5 | a1i 9 |
. 2
⊢ (𝜑 → (1 / 2) <
1) |
| 7 | | halfgt0 9206 |
. . 3
⊢ 0 < (1
/ 2) |
| 8 | 7 | a1i 9 |
. 2
⊢ (𝜑 → 0 < (1 /
2)) |
| 9 | | efcllemp.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 10 | 9 | nnnn0d 9302 |
. 2
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 11 | | efcllemp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 12 | | efcllemp.1 |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| 13 | 12 | eftvalcn 11822 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 14 | | eftcl 11819 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 15 | 13, 14 | eqeltrd 2273 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) ∈
ℂ) |
| 16 | 11, 15 | sylan 283 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
| 17 | 11 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐴 ∈ ℂ) |
| 18 | 17 | abscld 11346 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘𝐴) ∈
ℝ) |
| 19 | | eluznn0 9673 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝐾)) → 𝑘 ∈ ℕ0) |
| 20 | 10, 19 | sylan 283 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝑘 ∈ ℕ0) |
| 21 | | nn0p1nn 9288 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
| 22 | 20, 21 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈ ℕ) |
| 23 | 18, 22 | nndivred 9040 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ) |
| 24 | 3 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (1 / 2) ∈
ℝ) |
| 25 | 18, 20 | reexpcld 10782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℝ) |
| 26 | 20 | faccld 10828 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘𝑘) ∈
ℕ) |
| 27 | 25, 26 | nndivred 9040 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 28 | 17, 20 | expcld 10765 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐴↑𝑘) ∈ ℂ) |
| 29 | 28 | absge0d 11349 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 ≤
(abs‘(𝐴↑𝑘))) |
| 30 | 17, 20 | absexpd 11357 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
| 31 | 29, 30 | breqtrd 4059 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 ≤
((abs‘𝐴)↑𝑘)) |
| 32 | 26 | nnred 9003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘𝑘) ∈
ℝ) |
| 33 | 26 | nngt0d 9034 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 < (!‘𝑘)) |
| 34 | | divge0 8900 |
. . . . 5
⊢
(((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤
((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 <
(!‘𝑘))) → 0 ≤
(((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
| 35 | 25, 31, 32, 33, 34 | syl22anc 1250 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 ≤
(((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
| 36 | | 2re 9060 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 37 | | abscl 11216 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
| 38 | | remulcl 8007 |
. . . . . . . . . 10
⊢ ((2
∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 ·
(abs‘𝐴)) ∈
ℝ) |
| 39 | 36, 37, 38 | sylancr 414 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (2
· (abs‘𝐴))
∈ ℝ) |
| 40 | 17, 39 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (2 ·
(abs‘𝐴)) ∈
ℝ) |
| 41 | | peano2nn0 9289 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ0
→ (𝐾 + 1) ∈
ℕ0) |
| 42 | 10, 41 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 + 1) ∈
ℕ0) |
| 43 | 42 | nn0red 9303 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 + 1) ∈ ℝ) |
| 44 | 43 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ∈ ℝ) |
| 45 | 22 | nnred 9003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈ ℝ) |
| 46 | 10 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈
ℕ0) |
| 47 | 46 | nn0red 9303 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ ℝ) |
| 48 | | efcllemp.ak |
. . . . . . . . . 10
⊢ (𝜑 → (2 ·
(abs‘𝐴)) < 𝐾) |
| 49 | 48 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (2 ·
(abs‘𝐴)) < 𝐾) |
| 50 | 47 | ltp1d 8957 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐾 < (𝐾 + 1)) |
| 51 | 40, 47, 44, 49, 50 | lttrd 8152 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (2 ·
(abs‘𝐴)) < (𝐾 + 1)) |
| 52 | | eluzp1p1 9627 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝐾) → (𝑘 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 53 | 52 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 54 | | eluzle 9613 |
. . . . . . . . 9
⊢ ((𝑘 + 1) ∈
(ℤ≥‘(𝐾 + 1)) → (𝐾 + 1) ≤ (𝑘 + 1)) |
| 55 | 53, 54 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ≤ (𝑘 + 1)) |
| 56 | 40, 44, 45, 51, 55 | ltletrd 8450 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (2 ·
(abs‘𝐴)) < (𝑘 + 1)) |
| 57 | 18 | recnd 8055 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘𝐴) ∈
ℂ) |
| 58 | | 2cn 9061 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
| 59 | | mulcom 8008 |
. . . . . . . 8
⊢
(((abs‘𝐴)
∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴))) |
| 60 | 57, 58, 59 | sylancl 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) · 2) = (2 ·
(abs‘𝐴))) |
| 61 | 22 | nncnd 9004 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈ ℂ) |
| 62 | 61 | mulid2d 8045 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (1 · (𝑘 + 1)) = (𝑘 + 1)) |
| 63 | 56, 60, 62 | 3brtr4d 4065 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) · 2) < (1 ·
(𝑘 + 1))) |
| 64 | | 2rp 9733 |
. . . . . . . 8
⊢ 2 ∈
ℝ+ |
| 65 | 64 | a1i 9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 2 ∈
ℝ+) |
| 66 | | 1red 8041 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 1 ∈
ℝ) |
| 67 | 22 | nnrpd 9769 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈
ℝ+) |
| 68 | 18, 65, 66, 67 | lt2mul2divd 9840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (((abs‘𝐴) · 2) < (1 ·
(𝑘 + 1)) ↔
((abs‘𝐴) / (𝑘 + 1)) < (1 /
2))) |
| 69 | 63, 68 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)) |
| 70 | | ltle 8114 |
. . . . . 6
⊢
((((abs‘𝐴) /
(𝑘 + 1)) ∈ ℝ
∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))) |
| 71 | 23, 3, 70 | sylancl 413 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))) |
| 72 | 69, 71 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)) |
| 73 | 23, 24, 27, 35, 72 | lemul2ad 8967 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2))) |
| 74 | | peano2nn0 9289 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
| 75 | 20, 74 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈
ℕ0) |
| 76 | 12 | eftvalcn 11822 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈
ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) |
| 77 | 11, 75, 76 | syl2an2r 595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) |
| 78 | 77 | fveq2d 5562 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))) |
| 79 | 17, 75 | absexpd 11357 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))) |
| 80 | 57, 20 | expp1d 10766 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
| 81 | 79, 80 | eqtrd 2229 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
| 82 | 75 | faccld 10828 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) ∈
ℕ) |
| 83 | 82 | nnred 9003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) ∈
ℝ) |
| 84 | 82 | nnnn0d 9302 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) ∈
ℕ0) |
| 85 | 84 | nn0ge0d 9305 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 ≤ (!‘(𝑘 + 1))) |
| 86 | 83, 85 | absidd 11332 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) →
(abs‘(!‘(𝑘 +
1))) = (!‘(𝑘 +
1))) |
| 87 | | facp1 10822 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (!‘(𝑘 + 1)) =
((!‘𝑘) ·
(𝑘 + 1))) |
| 88 | 20, 87 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
| 89 | 86, 88 | eqtrd 2229 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) →
(abs‘(!‘(𝑘 +
1))) = ((!‘𝑘)
· (𝑘 +
1))) |
| 90 | 81, 89 | oveq12d 5940 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1)))) |
| 91 | 17, 75 | expcld 10765 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐴↑(𝑘 + 1)) ∈ ℂ) |
| 92 | 82 | nncnd 9004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) ∈
ℂ) |
| 93 | 82 | nnap0d 9036 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) # 0) |
| 94 | 91, 92, 93 | absdivapd 11360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1))))) |
| 95 | 25 | recnd 8055 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℂ) |
| 96 | 26 | nncnd 9004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘𝑘) ∈
ℂ) |
| 97 | 26 | nnap0d 9036 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘𝑘) # 0) |
| 98 | 22 | nnap0d 9036 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) # 0) |
| 99 | 95, 96, 57, 61, 97, 98 | divmuldivapd 8859 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1)))) |
| 100 | 90, 94, 99 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1)))) |
| 101 | 78, 100 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1)))) |
| 102 | | halfcn 9205 |
. . . . 5
⊢ (1 / 2)
∈ ℂ |
| 103 | 11, 20, 15 | syl2an2r 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) ∈ ℂ) |
| 104 | 103 | abscld 11346 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 105 | 104 | recnd 8055 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘𝑘)) ∈ ℂ) |
| 106 | | mulcom 8008 |
. . . . 5
⊢ (((1 / 2)
∈ ℂ ∧ (abs‘(𝐹‘𝑘)) ∈ ℂ) → ((1 / 2) ·
(abs‘(𝐹‘𝑘))) = ((abs‘(𝐹‘𝑘)) · (1 / 2))) |
| 107 | 102, 105,
106 | sylancr 414 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((1 / 2) ·
(abs‘(𝐹‘𝑘))) = ((abs‘(𝐹‘𝑘)) · (1 / 2))) |
| 108 | 11, 20, 13 | syl2an2r 595 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 109 | 108 | fveq2d 5562 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘𝑘)) = (abs‘((𝐴↑𝑘) / (!‘𝑘)))) |
| 110 | | eftabs 11821 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘((𝐴↑𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
| 111 | 11, 20, 110 | syl2an2r 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘((𝐴↑𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
| 112 | 109, 111 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
| 113 | 112 | oveq1d 5937 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘(𝐹‘𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2))) |
| 114 | 107, 113 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((1 / 2) ·
(abs‘(𝐹‘𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2))) |
| 115 | 73, 101, 114 | 3brtr4d 4065 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) ·
(abs‘(𝐹‘𝑘)))) |
| 116 | 1, 2, 4, 6, 8, 10,
16, 115 | cvgratgt0 11698 |
1
⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) |