ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp GIF version

Theorem efcllemp 11801
Description: Lemma for efcl 11807. The series that defines the exponential function converges. The ratio test cvgratgt0 11676 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efcllemp.a (𝜑𝐴 ∈ ℂ)
efcllemp.k (𝜑𝐾 ∈ ℕ)
efcllemp.ak (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
Assertion
Ref Expression
efcllemp (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐾(𝑛)

Proof of Theorem efcllemp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9627 . 2 0 = (ℤ‘0)
2 eqid 2193 . 2 (ℤ𝐾) = (ℤ𝐾)
3 halfre 9195 . . 3 (1 / 2) ∈ ℝ
43a1i 9 . 2 (𝜑 → (1 / 2) ∈ ℝ)
5 halflt1 9199 . . 3 (1 / 2) < 1
65a1i 9 . 2 (𝜑 → (1 / 2) < 1)
7 halfgt0 9197 . . 3 0 < (1 / 2)
87a1i 9 . 2 (𝜑 → 0 < (1 / 2))
9 efcllemp.k . . 3 (𝜑𝐾 ∈ ℕ)
109nnnn0d 9293 . 2 (𝜑𝐾 ∈ ℕ0)
11 efcllemp.a . . 3 (𝜑𝐴 ∈ ℂ)
12 efcllemp.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1312eftvalcn 11800 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 eftcl 11797 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14eqeltrd 2270 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1611, 15sylan 283 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1711adantr 276 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐴 ∈ ℂ)
1817abscld 11325 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℝ)
19 eluznn0 9664 . . . . . . 7 ((𝐾 ∈ ℕ0𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
2010, 19sylan 283 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
21 nn0p1nn 9279 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2220, 21syl 14 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ)
2318, 22nndivred 9032 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
243a1i 9 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 / 2) ∈ ℝ)
2518, 20reexpcld 10761 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
2620faccld 10807 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℕ)
2725, 26nndivred 9032 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2817, 20expcld 10744 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴𝑘) ∈ ℂ)
2928absge0d 11328 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (abs‘(𝐴𝑘)))
3017, 20absexpd 11336 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3129, 30breqtrd 4055 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ ((abs‘𝐴)↑𝑘))
3226nnred 8995 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℝ)
3326nngt0d 9026 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 < (!‘𝑘))
34 divge0 8892 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3525, 31, 32, 33, 34syl22anc 1250 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
36 2re 9052 . . . . . . . . . 10 2 ∈ ℝ
37 abscl 11195 . . . . . . . . . 10 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
38 remulcl 8000 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
3936, 37, 38sylancr 414 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
4017, 39syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) ∈ ℝ)
41 peano2nn0 9280 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
4210, 41syl 14 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℕ0)
4342nn0red 9294 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℝ)
4443adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℝ)
4522nnred 8995 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ)
4610adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℕ0)
4746nn0red 9294 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℝ)
48 efcllemp.ak . . . . . . . . . 10 (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
4948adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < 𝐾)
5047ltp1d 8949 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 < (𝐾 + 1))
5140, 47, 44, 49, 50lttrd 8145 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝐾 + 1))
52 eluzp1p1 9618 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝐾) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
5352adantl 277 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
54 eluzle 9604 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)) → (𝐾 + 1) ≤ (𝑘 + 1))
5553, 54syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ≤ (𝑘 + 1))
5640, 44, 45, 51, 55ltletrd 8442 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5718recnd 8048 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℂ)
58 2cn 9053 . . . . . . . 8 2 ∈ ℂ
59 mulcom 8001 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6057, 58, 59sylancl 413 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6122nncnd 8996 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℂ)
6261mulid2d 8038 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6356, 60, 623brtr4d 4061 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
64 2rp 9724 . . . . . . . 8 2 ∈ ℝ+
6564a1i 9 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 2 ∈ ℝ+)
66 1red 8034 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 1 ∈ ℝ)
6722nnrpd 9760 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ+)
6818, 65, 66, 67lt2mul2divd 9831 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6963, 68mpbid 147 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
70 ltle 8107 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7123, 3, 70sylancl 413 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7269, 71mpd 13 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7323, 24, 27, 35, 72lemul2ad 8959 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
74 peano2nn0 9280 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7520, 74syl 14 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ0)
7612eftvalcn 11800 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7711, 75, 76syl2an2r 595 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7877fveq2d 5558 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
7917, 75absexpd 11336 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8057, 20expp1d 10745 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2226 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8275faccld 10807 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 8995 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 9293 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 9296 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 11311 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 10801 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8820, 87syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2226 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 5936 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
9117, 75expcld 10744 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9282nncnd 8996 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℂ)
9382nnap0d 9028 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) # 0)
9491, 92, 93absdivapd 11339 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9525recnd 8048 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9626nncnd 8996 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℂ)
9726nnap0d 9028 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) # 0)
9822nnap0d 9028 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) # 0)
9995, 96, 57, 61, 97, 98divmuldivapd 8851 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10090, 94, 993eqtr4d 2236 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10178, 100eqtrd 2226 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
102 halfcn 9196 . . . . 5 (1 / 2) ∈ ℂ
10311, 20, 15syl2an2r 595 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) ∈ ℂ)
104103abscld 11325 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℝ)
105104recnd 8048 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℂ)
106 mulcom 8001 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
107102, 105, 106sylancr 414 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10811, 20, 13syl2an2r 595 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
109108fveq2d 5558 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
110 eftabs 11799 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11111, 20, 110syl2an2r 595 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
112109, 111eqtrd 2226 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113112oveq1d 5933 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
114107, 113eqtrd 2226 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11573, 101, 1143brtr4d 4061 . 2 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 11676 1 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164   class class class wbr 4029  cmpt 4090  dom cdm 4659  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055   / cdiv 8691  cn 8982  2c2 9033  0cn0 9240  cuz 9592  +crp 9719  seqcseq 10518  cexp 10609  !cfa 10796  abscabs 11141  cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  efcllem  11802
  Copyright terms: Public domain W3C validator