Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp GIF version

Theorem efcllemp 11353
 Description: Lemma for efcl 11359. The series that defines the exponential function converges. The ratio test cvgratgt0 11295 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efcllemp.a (𝜑𝐴 ∈ ℂ)
efcllemp.k (𝜑𝐾 ∈ ℕ)
efcllemp.ak (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
Assertion
Ref Expression
efcllemp (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐾(𝑛)

Proof of Theorem efcllemp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9353 . 2 0 = (ℤ‘0)
2 eqid 2137 . 2 (ℤ𝐾) = (ℤ𝐾)
3 halfre 8926 . . 3 (1 / 2) ∈ ℝ
43a1i 9 . 2 (𝜑 → (1 / 2) ∈ ℝ)
5 halflt1 8930 . . 3 (1 / 2) < 1
65a1i 9 . 2 (𝜑 → (1 / 2) < 1)
7 halfgt0 8928 . . 3 0 < (1 / 2)
87a1i 9 . 2 (𝜑 → 0 < (1 / 2))
9 efcllemp.k . . 3 (𝜑𝐾 ∈ ℕ)
109nnnn0d 9023 . 2 (𝜑𝐾 ∈ ℕ0)
11 efcllemp.a . . 3 (𝜑𝐴 ∈ ℂ)
12 efcllemp.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1312eftvalcn 11352 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 eftcl 11349 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14eqeltrd 2214 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1611, 15sylan 281 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1711adantr 274 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐴 ∈ ℂ)
1817abscld 10946 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℝ)
19 eluznn0 9386 . . . . . . 7 ((𝐾 ∈ ℕ0𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
2010, 19sylan 281 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
21 nn0p1nn 9009 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2220, 21syl 14 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ)
2318, 22nndivred 8763 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
243a1i 9 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 / 2) ∈ ℝ)
2518, 20reexpcld 10434 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
2620faccld 10475 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℕ)
2725, 26nndivred 8763 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2817, 20expcld 10417 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴𝑘) ∈ ℂ)
2928absge0d 10949 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (abs‘(𝐴𝑘)))
3017, 20absexpd 10957 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3129, 30breqtrd 3949 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ ((abs‘𝐴)↑𝑘))
3226nnred 8726 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℝ)
3326nngt0d 8757 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 < (!‘𝑘))
34 divge0 8624 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3525, 31, 32, 33, 34syl22anc 1217 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
36 2re 8783 . . . . . . . . . 10 2 ∈ ℝ
37 abscl 10816 . . . . . . . . . 10 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
38 remulcl 7741 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
3936, 37, 38sylancr 410 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
4017, 39syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) ∈ ℝ)
41 peano2nn0 9010 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
4210, 41syl 14 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℕ0)
4342nn0red 9024 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℝ)
4443adantr 274 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℝ)
4522nnred 8726 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ)
4610adantr 274 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℕ0)
4746nn0red 9024 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℝ)
48 efcllemp.ak . . . . . . . . . 10 (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
4948adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < 𝐾)
5047ltp1d 8681 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 < (𝐾 + 1))
5140, 47, 44, 49, 50lttrd 7881 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝐾 + 1))
52 eluzp1p1 9344 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝐾) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
5352adantl 275 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
54 eluzle 9331 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)) → (𝐾 + 1) ≤ (𝑘 + 1))
5553, 54syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ≤ (𝑘 + 1))
5640, 44, 45, 51, 55ltletrd 8178 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5718recnd 7787 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℂ)
58 2cn 8784 . . . . . . . 8 2 ∈ ℂ
59 mulcom 7742 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6057, 58, 59sylancl 409 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6122nncnd 8727 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℂ)
6261mulid2d 7777 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6356, 60, 623brtr4d 3955 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
64 2rp 9439 . . . . . . . 8 2 ∈ ℝ+
6564a1i 9 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 2 ∈ ℝ+)
66 1red 7774 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 1 ∈ ℝ)
6722nnrpd 9475 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ+)
6818, 65, 66, 67lt2mul2divd 9545 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6963, 68mpbid 146 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
70 ltle 7844 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7123, 3, 70sylancl 409 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7269, 71mpd 13 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7323, 24, 27, 35, 72lemul2ad 8691 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
74 peano2nn0 9010 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7520, 74syl 14 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ0)
7612eftvalcn 11352 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7711, 75, 76syl2an2r 584 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7877fveq2d 5418 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
7917, 75absexpd 10957 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8057, 20expp1d 10418 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2170 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8275faccld 10475 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 8726 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 9023 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 9026 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 10932 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 10469 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8820, 87syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2170 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 5785 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
9117, 75expcld 10417 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9282nncnd 8727 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℂ)
9382nnap0d 8759 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) # 0)
9491, 92, 93absdivapd 10960 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9525recnd 7787 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9626nncnd 8727 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℂ)
9726nnap0d 8759 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) # 0)
9822nnap0d 8759 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) # 0)
9995, 96, 57, 61, 97, 98divmuldivapd 8585 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10090, 94, 993eqtr4d 2180 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10178, 100eqtrd 2170 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
102 halfcn 8927 . . . . 5 (1 / 2) ∈ ℂ
10311, 20, 15syl2an2r 584 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) ∈ ℂ)
104103abscld 10946 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℝ)
105104recnd 7787 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℂ)
106 mulcom 7742 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
107102, 105, 106sylancr 410 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10811, 20, 13syl2an2r 584 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
109108fveq2d 5418 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
110 eftabs 11351 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11111, 20, 110syl2an2r 584 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
112109, 111eqtrd 2170 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113112oveq1d 5782 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
114107, 113eqtrd 2170 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11573, 101, 1143brtr4d 3955 . 2 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 11295 1 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1331   ∈ wcel 1480   class class class wbr 3924   ↦ cmpt 3984  dom cdm 4534  ‘cfv 5118  (class class class)co 5767  ℂcc 7611  ℝcr 7612  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618   < clt 7793   ≤ cle 7794   / cdiv 8425  ℕcn 8713  2c2 8764  ℕ0cn0 8970  ℤ≥cuz 9319  ℝ+crp 9434  seqcseq 10211  ↑cexp 10285  !cfa 10464  abscabs 10762   ⇝ cli 11040 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-ico 9670  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-fac 10465  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116 This theorem is referenced by:  efcllem  11354
 Copyright terms: Public domain W3C validator