ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp GIF version

Theorem efcllemp 11632
Description: Lemma for efcl 11638. The series that defines the exponential function converges. The ratio test cvgratgt0 11507 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efcllemp.a (𝜑𝐴 ∈ ℂ)
efcllemp.k (𝜑𝐾 ∈ ℕ)
efcllemp.ak (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
Assertion
Ref Expression
efcllemp (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐾(𝑛)

Proof of Theorem efcllemp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9533 . 2 0 = (ℤ‘0)
2 eqid 2175 . 2 (ℤ𝐾) = (ℤ𝐾)
3 halfre 9103 . . 3 (1 / 2) ∈ ℝ
43a1i 9 . 2 (𝜑 → (1 / 2) ∈ ℝ)
5 halflt1 9107 . . 3 (1 / 2) < 1
65a1i 9 . 2 (𝜑 → (1 / 2) < 1)
7 halfgt0 9105 . . 3 0 < (1 / 2)
87a1i 9 . 2 (𝜑 → 0 < (1 / 2))
9 efcllemp.k . . 3 (𝜑𝐾 ∈ ℕ)
109nnnn0d 9200 . 2 (𝜑𝐾 ∈ ℕ0)
11 efcllemp.a . . 3 (𝜑𝐴 ∈ ℂ)
12 efcllemp.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1312eftvalcn 11631 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 eftcl 11628 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14eqeltrd 2252 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1611, 15sylan 283 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1711adantr 276 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐴 ∈ ℂ)
1817abscld 11156 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℝ)
19 eluznn0 9570 . . . . . . 7 ((𝐾 ∈ ℕ0𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
2010, 19sylan 283 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
21 nn0p1nn 9186 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2220, 21syl 14 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ)
2318, 22nndivred 8940 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
243a1i 9 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 / 2) ∈ ℝ)
2518, 20reexpcld 10638 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
2620faccld 10682 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℕ)
2725, 26nndivred 8940 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2817, 20expcld 10621 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴𝑘) ∈ ℂ)
2928absge0d 11159 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (abs‘(𝐴𝑘)))
3017, 20absexpd 11167 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3129, 30breqtrd 4024 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ ((abs‘𝐴)↑𝑘))
3226nnred 8903 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℝ)
3326nngt0d 8934 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 < (!‘𝑘))
34 divge0 8801 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3525, 31, 32, 33, 34syl22anc 1239 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
36 2re 8960 . . . . . . . . . 10 2 ∈ ℝ
37 abscl 11026 . . . . . . . . . 10 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
38 remulcl 7914 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
3936, 37, 38sylancr 414 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
4017, 39syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) ∈ ℝ)
41 peano2nn0 9187 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
4210, 41syl 14 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℕ0)
4342nn0red 9201 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℝ)
4443adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℝ)
4522nnred 8903 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ)
4610adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℕ0)
4746nn0red 9201 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℝ)
48 efcllemp.ak . . . . . . . . . 10 (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
4948adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < 𝐾)
5047ltp1d 8858 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 < (𝐾 + 1))
5140, 47, 44, 49, 50lttrd 8057 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝐾 + 1))
52 eluzp1p1 9524 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝐾) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
5352adantl 277 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
54 eluzle 9511 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)) → (𝐾 + 1) ≤ (𝑘 + 1))
5553, 54syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ≤ (𝑘 + 1))
5640, 44, 45, 51, 55ltletrd 8354 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5718recnd 7960 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℂ)
58 2cn 8961 . . . . . . . 8 2 ∈ ℂ
59 mulcom 7915 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6057, 58, 59sylancl 413 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6122nncnd 8904 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℂ)
6261mulid2d 7950 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6356, 60, 623brtr4d 4030 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
64 2rp 9627 . . . . . . . 8 2 ∈ ℝ+
6564a1i 9 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 2 ∈ ℝ+)
66 1red 7947 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 1 ∈ ℝ)
6722nnrpd 9663 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ+)
6818, 65, 66, 67lt2mul2divd 9734 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6963, 68mpbid 147 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
70 ltle 8019 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7123, 3, 70sylancl 413 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7269, 71mpd 13 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7323, 24, 27, 35, 72lemul2ad 8868 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
74 peano2nn0 9187 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7520, 74syl 14 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ0)
7612eftvalcn 11631 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7711, 75, 76syl2an2r 595 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7877fveq2d 5511 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
7917, 75absexpd 11167 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8057, 20expp1d 10622 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2208 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8275faccld 10682 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 8903 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 9200 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 9203 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 11142 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 10676 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8820, 87syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2208 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 5883 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
9117, 75expcld 10621 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9282nncnd 8904 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℂ)
9382nnap0d 8936 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) # 0)
9491, 92, 93absdivapd 11170 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9525recnd 7960 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9626nncnd 8904 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℂ)
9726nnap0d 8936 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) # 0)
9822nnap0d 8936 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) # 0)
9995, 96, 57, 61, 97, 98divmuldivapd 8761 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10090, 94, 993eqtr4d 2218 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10178, 100eqtrd 2208 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
102 halfcn 9104 . . . . 5 (1 / 2) ∈ ℂ
10311, 20, 15syl2an2r 595 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) ∈ ℂ)
104103abscld 11156 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℝ)
105104recnd 7960 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℂ)
106 mulcom 7915 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
107102, 105, 106sylancr 414 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10811, 20, 13syl2an2r 595 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
109108fveq2d 5511 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
110 eftabs 11630 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11111, 20, 110syl2an2r 595 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
112109, 111eqtrd 2208 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113112oveq1d 5880 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
114107, 113eqtrd 2208 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11573, 101, 1143brtr4d 4030 . 2 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 11507 1 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146   class class class wbr 3998  cmpt 4059  dom cdm 4620  cfv 5208  (class class class)co 5865  cc 7784  cr 7785  0cc0 7786  1c1 7787   + caddc 7789   · cmul 7791   < clt 7966  cle 7967   / cdiv 8601  cn 8890  2c2 8941  0cn0 9147  cuz 9499  +crp 9622  seqcseq 10413  cexp 10487  !cfa 10671  abscabs 10972  cli 11252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-ico 9863  df-fz 9978  df-fzo 10111  df-seqfrec 10414  df-exp 10488  df-fac 10672  df-ihash 10722  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-clim 11253  df-sumdc 11328
This theorem is referenced by:  efcllem  11633
  Copyright terms: Public domain W3C validator