Step | Hyp | Ref
| Expression |
1 | | nn0uz 9521 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
2 | | eqid 2170 |
. 2
⊢
(ℤ≥‘𝐾) = (ℤ≥‘𝐾) |
3 | | halfre 9091 |
. . 3
⊢ (1 / 2)
∈ ℝ |
4 | 3 | a1i 9 |
. 2
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
5 | | halflt1 9095 |
. . 3
⊢ (1 / 2)
< 1 |
6 | 5 | a1i 9 |
. 2
⊢ (𝜑 → (1 / 2) <
1) |
7 | | halfgt0 9093 |
. . 3
⊢ 0 < (1
/ 2) |
8 | 7 | a1i 9 |
. 2
⊢ (𝜑 → 0 < (1 /
2)) |
9 | | efcllemp.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ ℕ) |
10 | 9 | nnnn0d 9188 |
. 2
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
11 | | efcllemp.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℂ) |
12 | | efcllemp.1 |
. . . . 5
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
13 | 12 | eftvalcn 11620 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
14 | | eftcl 11617 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
15 | 13, 14 | eqeltrd 2247 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) ∈
ℂ) |
16 | 11, 15 | sylan 281 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
17 | 11 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐴 ∈ ℂ) |
18 | 17 | abscld 11145 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘𝐴) ∈
ℝ) |
19 | | eluznn0 9558 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝐾)) → 𝑘 ∈ ℕ0) |
20 | 10, 19 | sylan 281 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝑘 ∈ ℕ0) |
21 | | nn0p1nn 9174 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
22 | 20, 21 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈ ℕ) |
23 | 18, 22 | nndivred 8928 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ) |
24 | 3 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (1 / 2) ∈
ℝ) |
25 | 18, 20 | reexpcld 10626 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℝ) |
26 | 20 | faccld 10670 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘𝑘) ∈
ℕ) |
27 | 25, 26 | nndivred 8928 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ) |
28 | 17, 20 | expcld 10609 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐴↑𝑘) ∈ ℂ) |
29 | 28 | absge0d 11148 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 ≤
(abs‘(𝐴↑𝑘))) |
30 | 17, 20 | absexpd 11156 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
31 | 29, 30 | breqtrd 4015 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 ≤
((abs‘𝐴)↑𝑘)) |
32 | 26 | nnred 8891 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘𝑘) ∈
ℝ) |
33 | 26 | nngt0d 8922 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 < (!‘𝑘)) |
34 | | divge0 8789 |
. . . . 5
⊢
(((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤
((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 <
(!‘𝑘))) → 0 ≤
(((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
35 | 25, 31, 32, 33, 34 | syl22anc 1234 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 ≤
(((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
36 | | 2re 8948 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
37 | | abscl 11015 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
38 | | remulcl 7902 |
. . . . . . . . . 10
⊢ ((2
∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 ·
(abs‘𝐴)) ∈
ℝ) |
39 | 36, 37, 38 | sylancr 412 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (2
· (abs‘𝐴))
∈ ℝ) |
40 | 17, 39 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (2 ·
(abs‘𝐴)) ∈
ℝ) |
41 | | peano2nn0 9175 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ0
→ (𝐾 + 1) ∈
ℕ0) |
42 | 10, 41 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 + 1) ∈
ℕ0) |
43 | 42 | nn0red 9189 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 + 1) ∈ ℝ) |
44 | 43 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ∈ ℝ) |
45 | 22 | nnred 8891 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈ ℝ) |
46 | 10 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈
ℕ0) |
47 | 46 | nn0red 9189 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ ℝ) |
48 | | efcllemp.ak |
. . . . . . . . . 10
⊢ (𝜑 → (2 ·
(abs‘𝐴)) < 𝐾) |
49 | 48 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (2 ·
(abs‘𝐴)) < 𝐾) |
50 | 47 | ltp1d 8846 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐾 < (𝐾 + 1)) |
51 | 40, 47, 44, 49, 50 | lttrd 8045 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (2 ·
(abs‘𝐴)) < (𝐾 + 1)) |
52 | | eluzp1p1 9512 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝐾) → (𝑘 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
53 | 52 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
54 | | eluzle 9499 |
. . . . . . . . 9
⊢ ((𝑘 + 1) ∈
(ℤ≥‘(𝐾 + 1)) → (𝐾 + 1) ≤ (𝑘 + 1)) |
55 | 53, 54 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐾 + 1) ≤ (𝑘 + 1)) |
56 | 40, 44, 45, 51, 55 | ltletrd 8342 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (2 ·
(abs‘𝐴)) < (𝑘 + 1)) |
57 | 18 | recnd 7948 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘𝐴) ∈
ℂ) |
58 | | 2cn 8949 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
59 | | mulcom 7903 |
. . . . . . . 8
⊢
(((abs‘𝐴)
∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴))) |
60 | 57, 58, 59 | sylancl 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) · 2) = (2 ·
(abs‘𝐴))) |
61 | 22 | nncnd 8892 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈ ℂ) |
62 | 61 | mulid2d 7938 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (1 · (𝑘 + 1)) = (𝑘 + 1)) |
63 | 56, 60, 62 | 3brtr4d 4021 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) · 2) < (1 ·
(𝑘 + 1))) |
64 | | 2rp 9615 |
. . . . . . . 8
⊢ 2 ∈
ℝ+ |
65 | 64 | a1i 9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 2 ∈
ℝ+) |
66 | | 1red 7935 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 1 ∈
ℝ) |
67 | 22 | nnrpd 9651 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈
ℝ+) |
68 | 18, 65, 66, 67 | lt2mul2divd 9722 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (((abs‘𝐴) · 2) < (1 ·
(𝑘 + 1)) ↔
((abs‘𝐴) / (𝑘 + 1)) < (1 /
2))) |
69 | 63, 68 | mpbid 146 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)) |
70 | | ltle 8007 |
. . . . . 6
⊢
((((abs‘𝐴) /
(𝑘 + 1)) ∈ ℝ
∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))) |
71 | 23, 3, 70 | sylancl 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))) |
72 | 69, 71 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)) |
73 | 23, 24, 27, 35, 72 | lemul2ad 8856 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2))) |
74 | | peano2nn0 9175 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
75 | 20, 74 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈
ℕ0) |
76 | 12 | eftvalcn 11620 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈
ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) |
77 | 11, 75, 76 | syl2an2r 590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) |
78 | 77 | fveq2d 5500 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))) |
79 | 17, 75 | absexpd 11156 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1))) |
80 | 57, 20 | expp1d 10610 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
81 | 79, 80 | eqtrd 2203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴))) |
82 | 75 | faccld 10670 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) ∈
ℕ) |
83 | 82 | nnred 8891 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) ∈
ℝ) |
84 | 82 | nnnn0d 9188 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) ∈
ℕ0) |
85 | 84 | nn0ge0d 9191 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 0 ≤ (!‘(𝑘 + 1))) |
86 | 83, 85 | absidd 11131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) →
(abs‘(!‘(𝑘 +
1))) = (!‘(𝑘 +
1))) |
87 | | facp1 10664 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (!‘(𝑘 + 1)) =
((!‘𝑘) ·
(𝑘 + 1))) |
88 | 20, 87 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
89 | 86, 88 | eqtrd 2203 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) →
(abs‘(!‘(𝑘 +
1))) = ((!‘𝑘)
· (𝑘 +
1))) |
90 | 81, 89 | oveq12d 5871 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1)))) |
91 | 17, 75 | expcld 10609 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐴↑(𝑘 + 1)) ∈ ℂ) |
92 | 82 | nncnd 8892 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) ∈
ℂ) |
93 | 82 | nnap0d 8924 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘(𝑘 + 1)) # 0) |
94 | 91, 92, 93 | absdivapd 11159 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1))))) |
95 | 25 | recnd 7948 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℂ) |
96 | 26 | nncnd 8892 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘𝑘) ∈
ℂ) |
97 | 26 | nnap0d 8924 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (!‘𝑘) # 0) |
98 | 22 | nnap0d 8924 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) # 0) |
99 | 95, 96, 57, 61, 97, 98 | divmuldivapd 8749 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1)))) |
100 | 90, 94, 99 | 3eqtr4d 2213 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1)))) |
101 | 78, 100 | eqtrd 2203 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1)))) |
102 | | halfcn 9092 |
. . . . 5
⊢ (1 / 2)
∈ ℂ |
103 | 11, 20, 15 | syl2an2r 590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) ∈ ℂ) |
104 | 103 | abscld 11145 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
105 | 104 | recnd 7948 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘𝑘)) ∈ ℂ) |
106 | | mulcom 7903 |
. . . . 5
⊢ (((1 / 2)
∈ ℂ ∧ (abs‘(𝐹‘𝑘)) ∈ ℂ) → ((1 / 2) ·
(abs‘(𝐹‘𝑘))) = ((abs‘(𝐹‘𝑘)) · (1 / 2))) |
107 | 102, 105,
106 | sylancr 412 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((1 / 2) ·
(abs‘(𝐹‘𝑘))) = ((abs‘(𝐹‘𝑘)) · (1 / 2))) |
108 | 11, 20, 13 | syl2an2r 590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
109 | 108 | fveq2d 5500 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘𝑘)) = (abs‘((𝐴↑𝑘) / (!‘𝑘)))) |
110 | | eftabs 11619 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘((𝐴↑𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
111 | 11, 20, 110 | syl2an2r 590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘((𝐴↑𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
112 | 109, 111 | eqtrd 2203 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘))) |
113 | 112 | oveq1d 5868 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((abs‘(𝐹‘𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2))) |
114 | 107, 113 | eqtrd 2203 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((1 / 2) ·
(abs‘(𝐹‘𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2))) |
115 | 73, 101, 114 | 3brtr4d 4021 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) ·
(abs‘(𝐹‘𝑘)))) |
116 | 1, 2, 4, 6, 8, 10,
16, 115 | cvgratgt0 11496 |
1
⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) |