ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp GIF version

Theorem efcllemp 12177
Description: Lemma for efcl 12183. The series that defines the exponential function converges. The ratio test cvgratgt0 12052 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efcllemp.a (𝜑𝐴 ∈ ℂ)
efcllemp.k (𝜑𝐾 ∈ ℕ)
efcllemp.ak (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
Assertion
Ref Expression
efcllemp (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐾(𝑛)

Proof of Theorem efcllemp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9765 . 2 0 = (ℤ‘0)
2 eqid 2229 . 2 (ℤ𝐾) = (ℤ𝐾)
3 halfre 9332 . . 3 (1 / 2) ∈ ℝ
43a1i 9 . 2 (𝜑 → (1 / 2) ∈ ℝ)
5 halflt1 9336 . . 3 (1 / 2) < 1
65a1i 9 . 2 (𝜑 → (1 / 2) < 1)
7 halfgt0 9334 . . 3 0 < (1 / 2)
87a1i 9 . 2 (𝜑 → 0 < (1 / 2))
9 efcllemp.k . . 3 (𝜑𝐾 ∈ ℕ)
109nnnn0d 9430 . 2 (𝜑𝐾 ∈ ℕ0)
11 efcllemp.a . . 3 (𝜑𝐴 ∈ ℂ)
12 efcllemp.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1312eftvalcn 12176 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 eftcl 12173 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14eqeltrd 2306 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1611, 15sylan 283 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1711adantr 276 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐴 ∈ ℂ)
1817abscld 11700 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℝ)
19 eluznn0 9802 . . . . . . 7 ((𝐾 ∈ ℕ0𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
2010, 19sylan 283 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
21 nn0p1nn 9416 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2220, 21syl 14 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ)
2318, 22nndivred 9168 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
243a1i 9 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 / 2) ∈ ℝ)
2518, 20reexpcld 10920 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
2620faccld 10966 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℕ)
2725, 26nndivred 9168 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2817, 20expcld 10903 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴𝑘) ∈ ℂ)
2928absge0d 11703 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (abs‘(𝐴𝑘)))
3017, 20absexpd 11711 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3129, 30breqtrd 4109 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ ((abs‘𝐴)↑𝑘))
3226nnred 9131 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℝ)
3326nngt0d 9162 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 < (!‘𝑘))
34 divge0 9028 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3525, 31, 32, 33, 34syl22anc 1272 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
36 2re 9188 . . . . . . . . . 10 2 ∈ ℝ
37 abscl 11570 . . . . . . . . . 10 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
38 remulcl 8135 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
3936, 37, 38sylancr 414 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
4017, 39syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) ∈ ℝ)
41 peano2nn0 9417 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
4210, 41syl 14 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℕ0)
4342nn0red 9431 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℝ)
4443adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℝ)
4522nnred 9131 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ)
4610adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℕ0)
4746nn0red 9431 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℝ)
48 efcllemp.ak . . . . . . . . . 10 (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
4948adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < 𝐾)
5047ltp1d 9085 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 < (𝐾 + 1))
5140, 47, 44, 49, 50lttrd 8280 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝐾 + 1))
52 eluzp1p1 9756 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝐾) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
5352adantl 277 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
54 eluzle 9742 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)) → (𝐾 + 1) ≤ (𝑘 + 1))
5553, 54syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ≤ (𝑘 + 1))
5640, 44, 45, 51, 55ltletrd 8578 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5718recnd 8183 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℂ)
58 2cn 9189 . . . . . . . 8 2 ∈ ℂ
59 mulcom 8136 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6057, 58, 59sylancl 413 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6122nncnd 9132 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℂ)
6261mulid2d 8173 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6356, 60, 623brtr4d 4115 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
64 2rp 9862 . . . . . . . 8 2 ∈ ℝ+
6564a1i 9 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 2 ∈ ℝ+)
66 1red 8169 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 1 ∈ ℝ)
6722nnrpd 9898 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ+)
6818, 65, 66, 67lt2mul2divd 9969 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6963, 68mpbid 147 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
70 ltle 8242 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7123, 3, 70sylancl 413 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7269, 71mpd 13 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7323, 24, 27, 35, 72lemul2ad 9095 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
74 peano2nn0 9417 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7520, 74syl 14 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ0)
7612eftvalcn 12176 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7711, 75, 76syl2an2r 597 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7877fveq2d 5633 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
7917, 75absexpd 11711 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8057, 20expp1d 10904 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2262 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8275faccld 10966 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 9131 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 9430 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 9433 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 11686 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 10960 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8820, 87syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2262 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 6025 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
9117, 75expcld 10903 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9282nncnd 9132 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℂ)
9382nnap0d 9164 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) # 0)
9491, 92, 93absdivapd 11714 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9525recnd 8183 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9626nncnd 9132 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℂ)
9726nnap0d 9164 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) # 0)
9822nnap0d 9164 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) # 0)
9995, 96, 57, 61, 97, 98divmuldivapd 8987 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10090, 94, 993eqtr4d 2272 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10178, 100eqtrd 2262 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
102 halfcn 9333 . . . . 5 (1 / 2) ∈ ℂ
10311, 20, 15syl2an2r 597 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) ∈ ℂ)
104103abscld 11700 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℝ)
105104recnd 8183 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℂ)
106 mulcom 8136 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
107102, 105, 106sylancr 414 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10811, 20, 13syl2an2r 597 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
109108fveq2d 5633 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
110 eftabs 12175 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11111, 20, 110syl2an2r 597 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
112109, 111eqtrd 2262 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113112oveq1d 6022 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
114107, 113eqtrd 2262 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11573, 101, 1143brtr4d 4115 . 2 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 12052 1 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200   class class class wbr 4083  cmpt 4145  dom cdm 4719  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cle 8190   / cdiv 8827  cn 9118  2c2 9169  0cn0 9377  cuz 9730  +crp 9857  seqcseq 10677  cexp 10768  !cfa 10955  abscabs 11516  cli 11797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-ico 10098  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873
This theorem is referenced by:  efcllem  12178
  Copyright terms: Public domain W3C validator