ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efcllemp GIF version

Theorem efcllemp 11002
Description: Lemma for efcl 11008. The series that defines the exponential function converges. The ratio test cvgratgt0 10981 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
efcllemp.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efcllemp.a (𝜑𝐴 ∈ ℂ)
efcllemp.k (𝜑𝐾 ∈ ℕ)
efcllemp.ak (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
Assertion
Ref Expression
efcllemp (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐾(𝑛)

Proof of Theorem efcllemp
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9107 . 2 0 = (ℤ‘0)
2 eqid 2089 . 2 (ℤ𝐾) = (ℤ𝐾)
3 halfre 8683 . . 3 (1 / 2) ∈ ℝ
43a1i 9 . 2 (𝜑 → (1 / 2) ∈ ℝ)
5 halflt1 8687 . . 3 (1 / 2) < 1
65a1i 9 . 2 (𝜑 → (1 / 2) < 1)
7 halfgt0 8685 . . 3 0 < (1 / 2)
87a1i 9 . 2 (𝜑 → 0 < (1 / 2))
9 efcllemp.k . . 3 (𝜑𝐾 ∈ ℕ)
109nnnn0d 8780 . 2 (𝜑𝐾 ∈ ℕ0)
11 efcllemp.a . . 3 (𝜑𝐴 ∈ ℂ)
12 efcllemp.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1312eftvalcn 11001 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 eftcl 10998 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14eqeltrd 2165 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1611, 15sylan 278 . 2 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
1711adantr 271 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐴 ∈ ℂ)
1817abscld 10668 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℝ)
19 eluznn0 9140 . . . . . . 7 ((𝐾 ∈ ℕ0𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
2010, 19sylan 278 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ ℕ0)
21 nn0p1nn 8766 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2220, 21syl 14 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ)
2318, 22nndivred 8526 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
243a1i 9 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 / 2) ∈ ℝ)
2518, 20reexpcld 10157 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
2620faccld 10198 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℕ)
2725, 26nndivred 8526 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
2817, 20expcld 10140 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴𝑘) ∈ ℂ)
2928absge0d 10671 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (abs‘(𝐴𝑘)))
3017, 20absexpd 10679 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3129, 30breqtrd 3875 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ ((abs‘𝐴)↑𝑘))
3226nnred 8489 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℝ)
3326nngt0d 8520 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 < (!‘𝑘))
34 divge0 8388 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3525, 31, 32, 33, 34syl22anc 1176 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
36 2re 8546 . . . . . . . . . 10 2 ∈ ℝ
37 abscl 10538 . . . . . . . . . 10 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
38 remulcl 7524 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
3936, 37, 38sylancr 406 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
4017, 39syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) ∈ ℝ)
41 peano2nn0 8767 . . . . . . . . . . 11 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
4210, 41syl 14 . . . . . . . . . 10 (𝜑 → (𝐾 + 1) ∈ ℕ0)
4342nn0red 8781 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℝ)
4443adantr 271 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℝ)
4522nnred 8489 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ)
4610adantr 271 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℕ0)
4746nn0red 8781 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ ℝ)
48 efcllemp.ak . . . . . . . . . 10 (𝜑 → (2 · (abs‘𝐴)) < 𝐾)
4948adantr 271 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < 𝐾)
5047ltp1d 8445 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 < (𝐾 + 1))
5140, 47, 44, 49, 50lttrd 7663 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝐾 + 1))
52 eluzp1p1 9098 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝐾) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
5352adantl 272 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)))
54 eluzle 9085 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘(𝐾 + 1)) → (𝐾 + 1) ≤ (𝑘 + 1))
5553, 54syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐾 + 1) ≤ (𝑘 + 1))
5640, 44, 45, 51, 55ltletrd 7955 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5718recnd 7570 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘𝐴) ∈ ℂ)
58 2cn 8547 . . . . . . . 8 2 ∈ ℂ
59 mulcom 7525 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6057, 58, 59sylancl 405 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6122nncnd 8490 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℂ)
6261mulid2d 7560 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6356, 60, 623brtr4d 3881 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
64 2rp 9193 . . . . . . . 8 2 ∈ ℝ+
6564a1i 9 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 2 ∈ ℝ+)
66 1red 7557 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → 1 ∈ ℝ)
6722nnrpd 9226 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℝ+)
6818, 65, 66, 67lt2mul2divd 9290 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6963, 68mpbid 146 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
70 ltle 7626 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7123, 3, 70sylancl 405 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7269, 71mpd 13 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7323, 24, 27, 35, 72lemul2ad 8455 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
74 peano2nn0 8767 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7520, 74syl 14 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ ℕ0)
7612eftvalcn 11001 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7711, 75, 76syl2an2r 563 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7877fveq2d 5322 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
7917, 75absexpd 10679 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8057, 20expp1d 10141 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2121 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8275faccld 10198 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 8489 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 8780 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 8783 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 10654 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 10192 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8820, 87syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2121 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 5684 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
9117, 75expcld 10140 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9282nncnd 8490 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) ∈ ℂ)
9382nnap0d 8522 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘(𝑘 + 1)) # 0)
9491, 92, 93absdivapd 10682 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9525recnd 7570 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9626nncnd 8490 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) ∈ ℂ)
9726nnap0d 8522 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (!‘𝑘) # 0)
9822nnap0d 8522 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) # 0)
9995, 96, 57, 61, 97, 98divmuldivapd 8353 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10090, 94, 993eqtr4d 2131 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10178, 100eqtrd 2121 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
102 halfcn 8684 . . . . 5 (1 / 2) ∈ ℂ
10311, 20, 15syl2an2r 563 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) ∈ ℂ)
104103abscld 10668 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℝ)
105104recnd 7570 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) ∈ ℂ)
106 mulcom 7525 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
107102, 105, 106sylancr 406 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10811, 20, 13syl2an2r 563 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
109108fveq2d 5322 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
110 eftabs 11000 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11111, 20, 110syl2an2r 563 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
112109, 111eqtrd 2121 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113112oveq1d 5681 . . . 4 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
114107, 113eqtrd 2121 . . 3 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11573, 101, 1143brtr4d 3881 . 2 ((𝜑𝑘 ∈ (ℤ𝐾)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1161, 2, 4, 6, 8, 10, 16, 115cvgratgt0 10981 1 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439   class class class wbr 3851  cmpt 3905  dom cdm 4451  cfv 5028  (class class class)co 5666  cc 7402  cr 7403  0cc0 7404  1c1 7405   + caddc 7407   · cmul 7409   < clt 7576  cle 7577   / cdiv 8193  cn 8476  2c2 8527  0cn0 8727  cuz 9073  +crp 9188  seqcseq 9906  cexp 10008  !cfa 10187  abscabs 10484  cli 10720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-mulrcl 7498  ax-addcom 7499  ax-mulcom 7500  ax-addass 7501  ax-mulass 7502  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-1rid 7506  ax-0id 7507  ax-rnegex 7508  ax-precex 7509  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-apti 7514  ax-pre-ltadd 7515  ax-pre-mulgt0 7516  ax-pre-mulext 7517  ax-arch 7518  ax-caucvg 7519
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-reap 8106  df-ap 8113  df-div 8194  df-inn 8477  df-2 8535  df-3 8536  df-4 8537  df-n0 8728  df-z 8805  df-uz 9074  df-q 9159  df-rp 9189  df-ico 9366  df-fz 9479  df-fzo 9608  df-iseq 9907  df-seq3 9908  df-exp 10009  df-fac 10188  df-ihash 10238  df-cj 10330  df-re 10331  df-im 10332  df-rsqrt 10485  df-abs 10486  df-clim 10721  df-isum 10797
This theorem is referenced by:  efcllem  11003
  Copyright terms: Public domain W3C validator