ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crre GIF version

Theorem crre 11039
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)

Proof of Theorem crre
StepHypRef Expression
1 recn 8029 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 7991 . . . . 5 i ∈ ℂ
3 recn 8029 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 8023 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 414 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 8021 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 289 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 reval 11031 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
97, 8syl 14 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
10 cjcl 11030 . . . . . 6 ((𝐴 + (i · 𝐵)) ∈ ℂ → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
117, 10syl 14 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
127, 11addcld 8063 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
1312halfcld 9253 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
141adantr 276 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
15 recl 11035 . . . . . . 7 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
167, 15syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
179, 16eqeltrrd 2274 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℝ)
18 simpl 109 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
1917, 18resubcld 8424 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ)
202a1i 9 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → i ∈ ℂ)
213adantl 277 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
222, 21, 4sylancr 414 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · 𝐵) ∈ ℂ)
237, 11subcld 8354 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
2423halfcld 9253 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
2520, 22, 24subdid 8457 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
2614, 22, 14pnpcand 8391 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = ((i · 𝐵) − 𝐴))
2722, 14, 22pnpcan2d 8392 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) = ((i · 𝐵) − 𝐴))
2826, 27eqtr4d 2232 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))))
2928oveq1d 5940 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3014, 14addcld 8063 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐴) ∈ ℂ)
317, 11, 30addsubd 8375 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))))
3222, 22addcld 8063 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · 𝐵) + (i · 𝐵)) ∈ ℂ)
3332, 7, 11subsubd 8382 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3429, 31, 333eqtr4d 2239 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
35142timesd 9251 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) = (𝐴 + 𝐴))
3635oveq2d 5941 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)))
37222timesd 9251 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) = ((i · 𝐵) + (i · 𝐵)))
3837oveq1d 5940 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
3934, 36, 383eqtr4d 2239 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
4039oveq1d 5940 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2))
41 2cn 9078 . . . . . . . . . . 11 2 ∈ ℂ
42 mulcl 8023 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
4341, 14, 42sylancr 414 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) ∈ ℂ)
4441a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ)
45 2ap0 9100 . . . . . . . . . . 11 2 # 0
4645a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 # 0)
4712, 43, 44, 46divsubdirapd 8874 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)))
48 mulcl 8023 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (2 · (i · 𝐵)) ∈ ℂ)
4941, 22, 48sylancr 414 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) ∈ ℂ)
5049, 23, 44, 46divsubdirapd 8874 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5140, 47, 503eqtr3d 2237 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5214, 44, 46divcanap3d 8839 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · 𝐴) / 2) = 𝐴)
5352oveq2d 5941 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴))
5422, 44, 46divcanap3d 8839 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) / 2) = (i · 𝐵))
5554oveq1d 5940 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5651, 53, 553eqtr3d 2237 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5756oveq2d 5941 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
5820, 20, 21mulassd 8067 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) = (i · (i · 𝐵)))
5920, 23, 44, 46divassapd 8870 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
6058, 59oveq12d 5943 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
6125, 57, 603eqtr4d 2239 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)))
62 ixi 8627 . . . . . . . 8 (i · i) = -1
63 neg1rr 9113 . . . . . . . 8 -1 ∈ ℝ
6462, 63eqeltri 2269 . . . . . . 7 (i · i) ∈ ℝ
65 simpr 110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
66 remulcl 8024 . . . . . . 7 (((i · i) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
6764, 65, 66sylancr 414 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
68 cjth 11028 . . . . . . . . 9 ((𝐴 + (i · 𝐵)) ∈ ℂ → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℝ ∧ (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ))
6968simprd 114 . . . . . . . 8 ((𝐴 + (i · 𝐵)) ∈ ℂ → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
707, 69syl 14 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
7170rehalfcld 9255 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) ∈ ℝ)
7267, 71resubcld 8424 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) ∈ ℝ)
7361, 72eqeltrd 2273 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ)
74 rimul 8629 . . . 4 ((((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ ∧ (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7519, 73, 74syl2anc 411 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7613, 14, 75subeq0d 8362 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) = 𝐴)
779, 76eqtrd 2229 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897  ici 7898   + caddc 7899   · cmul 7901  cmin 8214  -cneg 8215   # cap 8625   / cdiv 8716  2c2 9058  ccj 11021  cre 11022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066  df-cj 11024  df-re 11025
This theorem is referenced by:  crim  11040  replim  11041  mulreap  11046  recj  11049  reneg  11050  readd  11051  remullem  11053  rei  11081  crrei  11118  crred  11158  rennim  11184  absreimsq  11249  4sqlem4  12586  2sqlem2  15440
  Copyright terms: Public domain W3C validator