ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crre GIF version

Theorem crre 10850
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)

Proof of Theorem crre
StepHypRef Expression
1 recn 7935 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 7897 . . . . 5 i ∈ ℂ
3 recn 7935 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 7929 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 414 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 7927 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 289 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 reval 10842 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
97, 8syl 14 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
10 cjcl 10841 . . . . . 6 ((𝐴 + (i · 𝐵)) ∈ ℂ → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
117, 10syl 14 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
127, 11addcld 7967 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
1312halfcld 9152 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
141adantr 276 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
15 recl 10846 . . . . . . 7 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
167, 15syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
179, 16eqeltrrd 2255 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℝ)
18 simpl 109 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
1917, 18resubcld 8328 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ)
202a1i 9 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → i ∈ ℂ)
213adantl 277 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
222, 21, 4sylancr 414 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · 𝐵) ∈ ℂ)
237, 11subcld 8258 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
2423halfcld 9152 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
2520, 22, 24subdid 8361 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
2614, 22, 14pnpcand 8295 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = ((i · 𝐵) − 𝐴))
2722, 14, 22pnpcan2d 8296 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) = ((i · 𝐵) − 𝐴))
2826, 27eqtr4d 2213 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))))
2928oveq1d 5884 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3014, 14addcld 7967 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐴) ∈ ℂ)
317, 11, 30addsubd 8279 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))))
3222, 22addcld 7967 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · 𝐵) + (i · 𝐵)) ∈ ℂ)
3332, 7, 11subsubd 8286 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3429, 31, 333eqtr4d 2220 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
35142timesd 9150 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) = (𝐴 + 𝐴))
3635oveq2d 5885 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)))
37222timesd 9150 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) = ((i · 𝐵) + (i · 𝐵)))
3837oveq1d 5884 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
3934, 36, 383eqtr4d 2220 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
4039oveq1d 5884 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2))
41 2cn 8979 . . . . . . . . . . 11 2 ∈ ℂ
42 mulcl 7929 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
4341, 14, 42sylancr 414 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) ∈ ℂ)
4441a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ)
45 2ap0 9001 . . . . . . . . . . 11 2 # 0
4645a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 # 0)
4712, 43, 44, 46divsubdirapd 8776 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)))
48 mulcl 7929 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (2 · (i · 𝐵)) ∈ ℂ)
4941, 22, 48sylancr 414 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) ∈ ℂ)
5049, 23, 44, 46divsubdirapd 8776 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5140, 47, 503eqtr3d 2218 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5214, 44, 46divcanap3d 8741 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · 𝐴) / 2) = 𝐴)
5352oveq2d 5885 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴))
5422, 44, 46divcanap3d 8741 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) / 2) = (i · 𝐵))
5554oveq1d 5884 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5651, 53, 553eqtr3d 2218 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5756oveq2d 5885 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
5820, 20, 21mulassd 7971 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) = (i · (i · 𝐵)))
5920, 23, 44, 46divassapd 8772 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
6058, 59oveq12d 5887 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
6125, 57, 603eqtr4d 2220 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)))
62 ixi 8530 . . . . . . . 8 (i · i) = -1
63 neg1rr 9014 . . . . . . . 8 -1 ∈ ℝ
6462, 63eqeltri 2250 . . . . . . 7 (i · i) ∈ ℝ
65 simpr 110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
66 remulcl 7930 . . . . . . 7 (((i · i) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
6764, 65, 66sylancr 414 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
68 cjth 10839 . . . . . . . . 9 ((𝐴 + (i · 𝐵)) ∈ ℂ → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℝ ∧ (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ))
6968simprd 114 . . . . . . . 8 ((𝐴 + (i · 𝐵)) ∈ ℂ → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
707, 69syl 14 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
7170rehalfcld 9154 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) ∈ ℝ)
7267, 71resubcld 8328 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) ∈ ℝ)
7361, 72eqeltrd 2254 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ)
74 rimul 8532 . . . 4 ((((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ ∧ (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7519, 73, 74syl2anc 411 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7613, 14, 75subeq0d 8266 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) = 𝐴)
779, 76eqtrd 2210 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803  ici 7804   + caddc 7805   · cmul 7807  cmin 8118  -cneg 8119   # cap 8528   / cdiv 8618  2c2 8959  ccj 10832  cre 10833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-2 8967  df-cj 10835  df-re 10836
This theorem is referenced by:  crim  10851  replim  10852  mulreap  10857  recj  10860  reneg  10861  readd  10862  remullem  10864  rei  10892  crrei  10929  crred  10969  rennim  10995  absreimsq  11060  4sqlem4  12373  2sqlem2  14118
  Copyright terms: Public domain W3C validator