ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqlelt GIF version

Theorem flqlelt 9586
Description: A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
Assertion
Ref Expression
flqlelt (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))

Proof of Theorem flqlelt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qre 9019 . . 3 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
2 flval 9582 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
32eqcomd 2090 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐴))
41, 3syl 14 . 2 (𝐴 ∈ ℚ → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐴))
5 flqcl 9583 . . 3 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
6 qbtwnz 9566 . . 3 (𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
7 breq1 3817 . . . . 5 (𝑥 = (⌊‘𝐴) → (𝑥𝐴 ↔ (⌊‘𝐴) ≤ 𝐴))
8 oveq1 5601 . . . . . 6 (𝑥 = (⌊‘𝐴) → (𝑥 + 1) = ((⌊‘𝐴) + 1))
98breq2d 3826 . . . . 5 (𝑥 = (⌊‘𝐴) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((⌊‘𝐴) + 1)))
107, 9anbi12d 457 . . . 4 (𝑥 = (⌊‘𝐴) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1))))
1110riota2 5572 . . 3 (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐴)))
125, 6, 11syl2anc 403 . 2 (𝐴 ∈ ℚ → (((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (⌊‘𝐴)))
134, 12mpbird 165 1 (𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  ∃!wreu 2357   class class class wbr 3814  cfv 4972  crio 5549  (class class class)co 5594  cr 7270  1c1 7272   + caddc 7274   < clt 7443  cle 7444  cz 8660  cq 9013  cfl 9578
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-mulrcl 7365  ax-addcom 7366  ax-mulcom 7367  ax-addass 7368  ax-mulass 7369  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-1rid 7373  ax-0id 7374  ax-rnegex 7375  ax-precex 7376  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-apti 7381  ax-pre-ltadd 7382  ax-pre-mulgt0 7383  ax-pre-mulext 7384  ax-arch 7385
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-id 4087  df-po 4090  df-iso 4091  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-1st 5849  df-2nd 5850  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-reap 7970  df-ap 7977  df-div 8056  df-inn 8335  df-n0 8584  df-z 8661  df-q 9014  df-rp 9044  df-fl 9580
This theorem is referenced by:  flqle  9588  flqltp1  9589  flqltnz  9597
  Copyright terms: Public domain W3C validator