Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > flqbi | GIF version |
Description: A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.) |
Ref | Expression |
---|---|
flqbi | ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qre 9598 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
2 | flval 10242 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | |
3 | 2 | eqeq1d 2184 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
4 | 1, 3 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
5 | 4 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
6 | qbtwnz 10222 | . . . 4 ⊢ (𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | |
7 | breq1 4001 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ≤ 𝐴 ↔ 𝐵 ≤ 𝐴)) | |
8 | oveq1 5872 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 + 1) = (𝐵 + 1)) | |
9 | 8 | breq2d 4010 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 < (𝑥 + 1) ↔ 𝐴 < (𝐵 + 1))) |
10 | 7, 9 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
11 | 10 | riota2 5843 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
12 | 6, 11 | sylan2 286 | . . 3 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℚ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
13 | 12 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = 𝐵)) |
14 | 5, 13 | bitr4d 191 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < (𝐵 + 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∃!wreu 2455 class class class wbr 3998 ‘cfv 5208 ℩crio 5820 (class class class)co 5865 ℝcr 7785 1c1 7787 + caddc 7789 < clt 7966 ≤ cle 7967 ℤcz 9226 ℚcq 9592 ⌊cfl 10238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-n0 9150 df-z 9227 df-q 9593 df-rp 9625 df-fl 10240 |
This theorem is referenced by: flqbi2 10261 flqaddz 10267 pcfaclem 12314 ex-fl 14037 |
Copyright terms: Public domain | W3C validator |