| Step | Hyp | Ref
| Expression |
| 1 | | rrgval.e |
. . . 4
⊢ 𝐸 = (RLReg‘𝑅) |
| 2 | 1 | rrgmex 13827 |
. . 3
⊢ (𝑧 ∈ 𝐸 → 𝑅 ∈ V) |
| 3 | | elrabi 2917 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} → 𝑧 ∈ 𝐵) |
| 4 | | rrgval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 5 | 4 | basmex 12747 |
. . . 4
⊢ (𝑧 ∈ 𝐵 → 𝑅 ∈ V) |
| 6 | 3, 5 | syl 14 |
. . 3
⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} → 𝑅 ∈ V) |
| 7 | | df-rlreg 13824 |
. . . . . 6
⊢ RLReg =
(𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) |
| 8 | | fveq2 5559 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 9 | 8, 4 | eqtr4di 2247 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 10 | | fveq2 5559 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) |
| 11 | | rrgval.t |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝑅) |
| 12 | 10, 11 | eqtr4di 2247 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = · ) |
| 13 | 12 | oveqd 5940 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑥(.r‘𝑟)𝑦) = (𝑥 · 𝑦)) |
| 14 | | fveq2 5559 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
| 15 | | rrgval.z |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
| 16 | 14, 15 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 17 | 13, 16 | eqeq12d 2211 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) ↔ (𝑥 · 𝑦) = 0 )) |
| 18 | 16 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑦 = (0g‘𝑟) ↔ 𝑦 = 0 )) |
| 19 | 17, 18 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟)) ↔ ((𝑥 · 𝑦) = 0 → 𝑦 = 0 ))) |
| 20 | 9, 19 | raleqbidv 2709 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟)) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 ))) |
| 21 | 9, 20 | rabeqbidv 2758 |
. . . . . 6
⊢ (𝑟 = 𝑅 → {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )}) |
| 22 | | id 19 |
. . . . . 6
⊢ (𝑅 ∈ V → 𝑅 ∈ V) |
| 23 | | basfn 12746 |
. . . . . . . . 9
⊢ Base Fn
V |
| 24 | | funfvex 5576 |
. . . . . . . . . 10
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 25 | 24 | funfni 5359 |
. . . . . . . . 9
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 26 | 23, 25 | mpan 424 |
. . . . . . . 8
⊢ (𝑅 ∈ V →
(Base‘𝑅) ∈
V) |
| 27 | 4, 26 | eqeltrid 2283 |
. . . . . . 7
⊢ (𝑅 ∈ V → 𝐵 ∈ V) |
| 28 | | rabexg 4177 |
. . . . . . 7
⊢ (𝐵 ∈ V → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} ∈
V) |
| 29 | 27, 28 | syl 14 |
. . . . . 6
⊢ (𝑅 ∈ V → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} ∈
V) |
| 30 | 7, 21, 22, 29 | fvmptd3 5656 |
. . . . 5
⊢ (𝑅 ∈ V →
(RLReg‘𝑅) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )}) |
| 31 | 1, 30 | eqtrid 2241 |
. . . 4
⊢ (𝑅 ∈ V → 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )}) |
| 32 | 31 | eleq2d 2266 |
. . 3
⊢ (𝑅 ∈ V → (𝑧 ∈ 𝐸 ↔ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )})) |
| 33 | 2, 6, 32 | pm5.21nii 705 |
. 2
⊢ (𝑧 ∈ 𝐸 ↔ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )}) |
| 34 | 33 | eqriv 2193 |
1
⊢ 𝐸 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 0 → 𝑦 = 0 )} |