ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgval GIF version

Theorem rrgval 13742
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgval 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝐸(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem rrgval
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4 𝐸 = (RLReg‘𝑅)
21rrgmex 13741 . . 3 (𝑧𝐸𝑅 ∈ V)
3 elrabi 2913 . . . 4 (𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} → 𝑧𝐵)
4 rrgval.b . . . . 5 𝐵 = (Base‘𝑅)
54basmex 12667 . . . 4 (𝑧𝐵𝑅 ∈ V)
63, 5syl 14 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} → 𝑅 ∈ V)
7 df-rlreg 13738 . . . . . 6 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
8 fveq2 5546 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
98, 4eqtr4di 2244 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
10 fveq2 5546 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
11 rrgval.t . . . . . . . . . . . 12 · = (.r𝑅)
1210, 11eqtr4di 2244 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = · )
1312oveqd 5927 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
14 fveq2 5546 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
15 rrgval.z . . . . . . . . . . 11 0 = (0g𝑅)
1614, 15eqtr4di 2244 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1713, 16eqeq12d 2208 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥(.r𝑟)𝑦) = (0g𝑟) ↔ (𝑥 · 𝑦) = 0 ))
1816eqeq2d 2205 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑦 = (0g𝑟) ↔ 𝑦 = 0 ))
1917, 18imbi12d 234 . . . . . . . 8 (𝑟 = 𝑅 → (((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ((𝑥 · 𝑦) = 0𝑦 = 0 )))
209, 19raleqbidv 2706 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )))
219, 20rabeqbidv 2755 . . . . . 6 (𝑟 = 𝑅 → {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
22 id 19 . . . . . 6 (𝑅 ∈ V → 𝑅 ∈ V)
23 basfn 12666 . . . . . . . . 9 Base Fn V
24 funfvex 5563 . . . . . . . . . 10 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2524funfni 5346 . . . . . . . . 9 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2623, 25mpan 424 . . . . . . . 8 (𝑅 ∈ V → (Base‘𝑅) ∈ V)
274, 26eqeltrid 2280 . . . . . . 7 (𝑅 ∈ V → 𝐵 ∈ V)
28 rabexg 4172 . . . . . . 7 (𝐵 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} ∈ V)
2927, 28syl 14 . . . . . 6 (𝑅 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} ∈ V)
307, 21, 22, 29fvmptd3 5643 . . . . 5 (𝑅 ∈ V → (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
311, 30eqtrid 2238 . . . 4 (𝑅 ∈ V → 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
3231eleq2d 2263 . . 3 (𝑅 ∈ V → (𝑧𝐸𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}))
332, 6, 32pm5.21nii 705 . 2 (𝑧𝐸𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
3433eqriv 2190 1 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wral 2472  {crab 2476  Vcvv 2760   Fn wfn 5241  cfv 5246  (class class class)co 5910  Basecbs 12608  .rcmulr 12686  0gc0g 12857  RLRegcrlreg 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-cnex 7953  ax-resscn 7954  ax-1re 7956  ax-addrcl 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-iota 5207  df-fun 5248  df-fn 5249  df-fv 5254  df-ov 5913  df-inn 8973  df-ndx 12611  df-slot 12612  df-base 12614  df-rlreg 13738
This theorem is referenced by:  isrrg  13743  rrgeq0  13745  rrgss  13746
  Copyright terms: Public domain W3C validator