ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgval GIF version

Theorem rrgval 13828
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgval 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝐸(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem rrgval
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4 𝐸 = (RLReg‘𝑅)
21rrgmex 13827 . . 3 (𝑧𝐸𝑅 ∈ V)
3 elrabi 2917 . . . 4 (𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} → 𝑧𝐵)
4 rrgval.b . . . . 5 𝐵 = (Base‘𝑅)
54basmex 12747 . . . 4 (𝑧𝐵𝑅 ∈ V)
63, 5syl 14 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} → 𝑅 ∈ V)
7 df-rlreg 13824 . . . . . 6 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
8 fveq2 5559 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
98, 4eqtr4di 2247 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
10 fveq2 5559 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
11 rrgval.t . . . . . . . . . . . 12 · = (.r𝑅)
1210, 11eqtr4di 2247 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = · )
1312oveqd 5940 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
14 fveq2 5559 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
15 rrgval.z . . . . . . . . . . 11 0 = (0g𝑅)
1614, 15eqtr4di 2247 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1713, 16eqeq12d 2211 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥(.r𝑟)𝑦) = (0g𝑟) ↔ (𝑥 · 𝑦) = 0 ))
1816eqeq2d 2208 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑦 = (0g𝑟) ↔ 𝑦 = 0 ))
1917, 18imbi12d 234 . . . . . . . 8 (𝑟 = 𝑅 → (((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ((𝑥 · 𝑦) = 0𝑦 = 0 )))
209, 19raleqbidv 2709 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )))
219, 20rabeqbidv 2758 . . . . . 6 (𝑟 = 𝑅 → {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
22 id 19 . . . . . 6 (𝑅 ∈ V → 𝑅 ∈ V)
23 basfn 12746 . . . . . . . . 9 Base Fn V
24 funfvex 5576 . . . . . . . . . 10 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2524funfni 5359 . . . . . . . . 9 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2623, 25mpan 424 . . . . . . . 8 (𝑅 ∈ V → (Base‘𝑅) ∈ V)
274, 26eqeltrid 2283 . . . . . . 7 (𝑅 ∈ V → 𝐵 ∈ V)
28 rabexg 4177 . . . . . . 7 (𝐵 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} ∈ V)
2927, 28syl 14 . . . . . 6 (𝑅 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} ∈ V)
307, 21, 22, 29fvmptd3 5656 . . . . 5 (𝑅 ∈ V → (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
311, 30eqtrid 2241 . . . 4 (𝑅 ∈ V → 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
3231eleq2d 2266 . . 3 (𝑅 ∈ V → (𝑧𝐸𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}))
332, 6, 32pm5.21nii 705 . 2 (𝑧𝐸𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
3433eqriv 2193 1 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wral 2475  {crab 2479  Vcvv 2763   Fn wfn 5254  cfv 5259  (class class class)co 5923  Basecbs 12688  .rcmulr 12766  0gc0g 12937  RLRegcrlreg 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7972  ax-resscn 7973  ax-1re 7975  ax-addrcl 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5926  df-inn 8993  df-ndx 12691  df-slot 12692  df-base 12694  df-rlreg 13824
This theorem is referenced by:  isrrg  13829  rrgeq0  13831  rrgss  13832
  Copyright terms: Public domain W3C validator