ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgval GIF version

Theorem rrgval 14211
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgval 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝐸(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem rrgval
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4 𝐸 = (RLReg‘𝑅)
21rrgmex 14210 . . 3 (𝑧𝐸𝑅 ∈ V)
3 elrabi 2956 . . . 4 (𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} → 𝑧𝐵)
4 rrgval.b . . . . 5 𝐵 = (Base‘𝑅)
54basmex 13078 . . . 4 (𝑧𝐵𝑅 ∈ V)
63, 5syl 14 . . 3 (𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} → 𝑅 ∈ V)
7 df-rlreg 14207 . . . . . 6 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
8 fveq2 5623 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
98, 4eqtr4di 2280 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
10 fveq2 5623 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
11 rrgval.t . . . . . . . . . . . 12 · = (.r𝑅)
1210, 11eqtr4di 2280 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r𝑟) = · )
1312oveqd 6011 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
14 fveq2 5623 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
15 rrgval.z . . . . . . . . . . 11 0 = (0g𝑅)
1614, 15eqtr4di 2280 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1713, 16eqeq12d 2244 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝑥(.r𝑟)𝑦) = (0g𝑟) ↔ (𝑥 · 𝑦) = 0 ))
1816eqeq2d 2241 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑦 = (0g𝑟) ↔ 𝑦 = 0 ))
1917, 18imbi12d 234 . . . . . . . 8 (𝑟 = 𝑅 → (((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ((𝑥 · 𝑦) = 0𝑦 = 0 )))
209, 19raleqbidv 2744 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )))
219, 20rabeqbidv 2794 . . . . . 6 (𝑟 = 𝑅 → {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
22 id 19 . . . . . 6 (𝑅 ∈ V → 𝑅 ∈ V)
23 basfn 13077 . . . . . . . . 9 Base Fn V
24 funfvex 5640 . . . . . . . . . 10 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2524funfni 5419 . . . . . . . . 9 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2623, 25mpan 424 . . . . . . . 8 (𝑅 ∈ V → (Base‘𝑅) ∈ V)
274, 26eqeltrid 2316 . . . . . . 7 (𝑅 ∈ V → 𝐵 ∈ V)
28 rabexg 4226 . . . . . . 7 (𝐵 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} ∈ V)
2927, 28syl 14 . . . . . 6 (𝑅 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} ∈ V)
307, 21, 22, 29fvmptd3 5721 . . . . 5 (𝑅 ∈ V → (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
311, 30eqtrid 2274 . . . 4 (𝑅 ∈ V → 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
3231eleq2d 2299 . . 3 (𝑅 ∈ V → (𝑧𝐸𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}))
332, 6, 32pm5.21nii 709 . 2 (𝑧𝐸𝑧 ∈ {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
3433eqriv 2226 1 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  wral 2508  {crab 2512  Vcvv 2799   Fn wfn 5309  cfv 5314  (class class class)co 5994  Basecbs 13018  .rcmulr 13097  0gc0g 13275  RLRegcrlreg 14204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-inn 9099  df-ndx 13021  df-slot 13022  df-base 13024  df-rlreg 14207
This theorem is referenced by:  isrrg  14212  rrgeq0  14214  rrgss  14215
  Copyright terms: Public domain W3C validator